High Performance Inverter Doesa
 VF1A series

\triangle CAUTION

Thank you for purchasing our multifunction Doesa VF1A series of inverters.

- For inverter type VF1A-G $\square \square \square \square$ S4, the destination value (function code H 101) is " 5 : Americas" by the factory default. For details, refer to 5.2.2 Function code tables.
- This product is designed to drive a three-phase motor under variable speed control. Read through this instruction manual and become familiar with the handling procedure for correct use.
- Improper handling might result in incorrect operation, a short life, or even a failure of this product as well as the motor.
- Deliver this manual to the end user of this product. Keep this manual in a safe place until this product is discarded.
- For how to use an optional device, refer to the instruction manual prepared for that optional device.
- This manual provides only major functions of the VF1A. For details, refer to the Doesa VF1A series User's Manual.

All rights reserved.
No part of this publication may be reproduced or copied without prior written permission from IDEC CORPORATION.

All products and company names mentioned in this manual are trademarks or registered trademarks of their respective holders.
The information contained herein is subject to change without prior notice for improvement.
The purpose of this instruction manual is to provide accurate information in handling, setting up and operating of the Doesa VF1A series of inverters. Please feel free to send your comments regarding any errors or omissions you may have found, or any suggestions you may have for generally improving the manual.

In no event will IDEC CORPORATION be liable for any direct or indirect damages resulting from the application of the information in this manual.

Preface

Thank you for purchasing our multifunction Doesa VF1A series of inverters. This product is designed to drive a three-phase induction motor or a three-phase permanent magnet synchronous motor under variable speed control. This manual provides all the information on the Doesa VF1A series of inverters including its operating procedure and selection of peripheral equipment. Before use, carefully read this manual for proper use. Improper handling might result in incorrect operation, a short life, or even a failure of this product as well as the motor.

The table below lists the other materials related to the use of the Doesa VF1A series. Read them in conjunction with this manual if necessary.

Name	Material No.	Description
Doesa VF1A series User's Manual	B-2302	Product details control block diagrams, specifications, and external dimensions
Doesa VF1A series RS-485	B-2303	Overview of functions implemented by using Doesa RS-485 communications facility, its communications specifications, Modbus RTU/Doesa general-purpose inverter protocol, function codes and related data formats

The materials are subject to change without notice. Be sure to obtain the latest editions for use.

CONTENTS

Chapter 1 BEFORE USE
1.1 Acceptance Inspection (Nameplates and Inverter Type) 1-1
1.2 External View and Terminal Blocks 1-3
1.3 Precautions for Using Inverters 1-5
1.3.1 Usage environment 1-5
1.3.2 Storage environment 1-7
[1] Temporary storage 1-7
[2] Long-term storage 1-7
Chapter 2 INSTALLATION AND WIRING
2.1 Installation 2-1
2.2 Wiring 2-3
2.2.1 Basic connection diagram 2-3
2.2.2 Removal and attachment of the front cover/ terminal cover and wiring guide 2-5
2.2.3 Precautions for wiring 2-7
2.2.4 Precautions for long wiring (between inverter and motor) 2-8
2.2.5 Main circuit terminals 2-10
[1] Screw specifications 2-10
[2] Terminal layout diagram (main circuit terminal) 2-11
[3] Recommended wire size (main circuit terminals) 2-12
[4] Description of terminal functions (main circuit terminal) 2-27
2.2.6 Control circuit terminals (common to all models) 2-31
[1] Screw specifications and recommended wire size (control circuit terminals) 2-31
[2] Terminal layout diagram (control circuit terminal) 2-31
[3] Description of terminal functions (control circuit terminal) 2-32
2.2.7 Operating slide switches 2-39
2.3 Attachment and Connection of Keypad 2-41
2.3.1 Parts required for connection 2-41
2.3.2 Attachment procedure 2-41
2.4 RJ-45 Cover 2-44
Chapter 3 OPERATION USING THE KEYPAD
3.1 Names and Functions of Keypad Components 3-1
3.2 Overview of Operation Modes 3-3
Chapter 4 TEST RUN PROCEDURE
4.1 Test Run Procedure Flowchart 4-1
4.2 Checking Prior to Powering On 4-2
4.3 Powering ON and Checking 4-3
4.4 Switching the Applicable Motor Rating (ND, HD, HND and HHD Modes) 4-4
Chapter 5 FUNCTION CODES
5.1 Function Codes Overview 5-1
5.2 Function Codes Table 5-1
5.2.1 Supplementary note 5-1
5.2.2 Function codes table 5-3
5.2.3 Factory default value per applicable electric motor capacitance 5-35
Chapter 6 TROUBLESHOOTING
6.1 Protective Function 6-1
6.2 Before Proceeding with Troubleshooting 6-2
6.3 If an Alarm Code Appears on the LED Monitor 6-3
6.3.1 Alarm code list 6-3
Chapter 7 MAINTENANCE AND INSPECTION
7.1 Inspection Interval 7-1
7.2 Daily Inspection 7-2
7.3 Periodic Inspection 7-3
7.3.1 Periodic inspection 1--Before the inverter is powered ON or after it stops running 7-3
7.3.2 Periodic inspection 2--When the inverter is ON or it is running 7-4
7.4 List of Periodic Replacement Parts 7-4
7.4.1 Judgment on service life 7-5
[1] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment 7-6
[2] Measuring the capacitance of the DC link bus capacitor under ordinary operating conditions 7-7
[3] Early warning of lifetime alarm 7-7
7.5 Measurement of Electrical Amounts in Main Circuit 7-8
7.6 Insulation Test 7-9
7.7 Inquiries about Product and Guarantee 7-9
7.7.1 When making an inquiry 7-9
7.7.2 Product warranty 7-10
[1] Free of charge warranty period and warranty range 7-10
[2] Exclusion of liability for loss of opportunity, etc 7-11
[3] Repair period after production stop, spare parts supply period (holding period) 7-11
[4] Transfer rights 7-11
[5] Service contents 7-11
[6] Applicable scope of service 7-11
APPENDICES
Appendix G Conformity with Standards 1
G. 1 Compliance with European Standards (© 1
[1] Compliance with EMC standards 1
[2] Compliance with the low voltage directive in the EU 4
G. 2 Harmonic Component Regulation in the EU 8
[1] General comments 8
[2] Compliance with the harmonic component regulation 8
G. 3 Compliance with UL Standards and Canadian Standards (cUL certification) 9
G. 5 Compliance with UK Standards (CA) 13

Safety precautions

Read this manual thoroughly before proceeding with installation, connections (wiring), operation, or maintenance and inspection. Ensure you have sound knowledge of the device and familiarize yourself with all safety information and precautions before proceeding to operate the inverter.

Safety precautions are classified into the following two categories in this manual.

Failure to heed the information indicated by this symbol may lead to dangerous conditions, possibly resulting in death or serious bodily injuries.

$\triangle C A U T I O N$

Failure to heed the information indicated by this symbol may lead to dangerous conditions, possibly resulting in minor or light bodily injuries and/or substantial property damage.

Failure to heed the information contained under the CAUTION title can also result in serious consequences. These safety precautions are of utmost importance and must be observed at all times.

Application

© WARNING

- The VF1A is designed to drive a three-phase induction motor. Do not use it for single-phase motors or for other purposes.

Fire or an accident could occur.

- The VF1A may not be used for a life-support system or other purposes directly related to the human safety.
- Though the VF1A is manufactured under strict quality control, install safety devices for applications where serious accidents or property damages are foreseen in relation to the failure of it.

An accident could occur.

Installation

\triangle WARNING

- Install the inverter on a base made of metal or other non-flammable material.

Otherwise, a fire could occur.

- Do not place flammable object nearby.

Doing so could cause fire.

- Inverters VF1A-G85A0S4 or above, whose protective structure is IP00, involve a possibility that a human body may touch the live conductors of the main circuit terminal block. Inverters to which an optional DC reactor is connected also involve the same. Install such inverters in an inaccessible place.

Otherwise, electric shock or injuries could occur.

\triangle CAUTION

- Do not support the inverter by its front cover during transportation.

Doing so could cause a drop of the inverter and injuries.

- Prevent lint, paper fibers, sawdust, dust, metallic chips, or other foreign materials from getting into the inverter or from accumulating on the heat sink.
- When changing the positions of the top and bottom mounting bases for external cooling, use only the specified screws.

Otherwise, a fire or an accident might result.

- Do not install or operate an inverter that is damaged or lacking parts.

Doing so could cause fire, an accident or injuries.

WARNING

- If no zero-phase current (earth leakage current) detective device such as a ground-fault relay is installed in the upstream power supply line, in order to avoid the entire power supply system's shutdown undesirable to factory operation, install a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) individually to inverters to break the individual inverter power supply lines only.

Otherwise, a fire could occur.

- When wiring the inverter to the power source, insert a recommended molded case circuit breaker (MCCB) or residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) (with overcurrent protection) in the path of each pair of power lines to inverters. Use the recommended devices within the recommended current capacity.
- Use wires in the specified size.
- Tighten terminals with specified torque.

Otherwise, a fire could occur.

- When there is more than one combination of an inverter and motor, do not use a multicore cable for the purpose of handling their wirings together.
- Do not connect a surge killer to the inverter's output (secondary) circuit.

Doing so could cause a fire.

- Be sure to connect an optional DC reactor (DCR) when the capacity of the power supply transformer exceeds 500 kVA and is 10 times or more the inverter rated capacity.

Otherwise, a fire could occur.

- Ground the inverter in compliance with the national or local electric code.
- Be sure to ground the inverter's grounding terminals ${ }^{8} \mathrm{G}$.

Otherwise, an electric shock or a fire could occur.

- Qualified electricians should carry out wiring.
- Be sure to perform wiring after turning the power OFF.

Otherwise, an electric shock could occur.

- Be sure to perform wiring after installing the inverter unit.

Otherwise, an electric shock or injuries could occur.

- Ensure that the number of input phases and the rated voltage of the product match the number of phases and the voltage of the AC power supply to which the product is to be connected.
Otherwise, a fire or an accident could occur.
- Do not connect the power supply wires to output terminals (U, V, and W).
- When connecting a DC braking resistor (DBR), never connect it to terminals other than terminals $P(+)$ and DB.

Doing so could cause fire or an accident.

- In general, sheaths of the control signal wires are not specifically designed to withstand a high voltage (i.e., reinforced insulation is not applied). Therefore, if a control signal wire comes into direct contact with a live conductor of the main circuit, the insulation of the sheath might break down, which would expose the signal wire to a high voltage of the main circuit. Make sure that the control signal wires will not come into contact with live conductors of the main circuit.

Doing so could cause an accident or an electric shock.

\triangle WARNING \triangle

- Before changing the switches or touching the control circuit terminal symbol plate, turn OFF the power and wait at least five minutes for inverters VF1A-G72A0S4 or below, or at least ten minutes for inverters VF1A-G85A0S4 or above. Make sure that the LED monitor and charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals $P(+)$ and $N(-)$ has dropped to the safe level (+25 VDC or below).
Otherwise, an electric shock could occur.
- The inverter, motor and wiring generate electric noise. Be careful about malfunction of the nearby sensors and devices. To prevent them from malfunctioning, implement noise control measures.
Otherwise an accident could occur.
- Be sure to mount the front cover before turning the power ON. Do not remove the cover when the inverter power is ON.

Otherwise, an electric shock could occur.

- Do not operate switches with wet hands.

Doing so could cause electric shock.

- If the auto-reset function has been selected, the inverter may automatically restart and drive the motor depending on the cause of tripping. Design the machinery or equipment so that human safety is ensured at the time of restarting.
Otherwise, an accident could occur.
- If the stall prevention function (current limiter), automatic deceleration (anti-regenerative control), or overload prevention control has been selected, the inverter may operate with acceleration/deceleration or frequency different from the commanded ones. Design the machine so that safety is ensured even in such cases.
- The key on the keypad is effective only when the keypad operation is enabled with function code F02 (= 0 , 2 or 3). When the keypad operation is disabled, prepare an emergency stop switch separately for safe operations.
Switching the run command source from keypad (local) to external equipment (remote) by turning ON the "Enable communications link" command $L E$ disables the key. To enable the for an emergency stop, select the STOP key priority with function code H96 (= 1 or 3).
- If any of the protective functions have been activated, first remove the cause. Then, after checking that the all run commands are set to OFF, release the alarm. If the alarm is released while any run commands are set to ON, the inverter may supply the power to the motor, running the motor.

Otherwise, an accident could occur.

- If you enable the "Restart mode after momentary power failure" (Function code F14 = 3 to 5), then the inverter automatically restarts running the motor when the power is recovered.

Design the machinery or equipment so that human safety is ensured after restarting.

- If the user configures the function codes wrongly without completely understanding the User's Manual, the motor may rotate with a torque or at a speed not permitted for the machine.
- Starting auto-tuning involves motor rotation. Sufficiently check that motor rotation brings no danger beforehand.

An accident or injuries could occur.

- Even if the inverter has interrupted power to the motor, if the voltage is applied to the main circuit input terminals $\mathrm{L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}, \mathrm{L} 1 / \mathrm{L}$ and $\mathrm{L} 2 / \mathrm{N}$, voltage may be output to inverter output terminals U, V, and W .
- Even if the motor is stopped due to DC braking or preliminary excitation, voltage is output to inverter output terminals U, V, and W .

An electric shock may occur.

- The inverter can easily accept high-speed operation. When changing the speed setting, carefully check the specifications of motors or equipment beforehand.

Otherwise, injuries could occur.

\triangle CAUTION

- Do not touch the heat sink and braking resistor because they become very hot.

Doing so could cause burns.

- The DC brake function of the inverter does not provide any holding mechanism.

Injuries could occur.

- Ensure safety before modifying the function code settings.

Run commands (e.g., "Run forward" FWD), stop commands (e.g., "Coast to a stop" BX), and frequency change commands can be assigned to digital input terminals. Depending upon the assignment states of those terminals, modifying the function code setting may cause a sudden motor start or an abrupt change in speed.

- When the inverter is controlled with the digital input signals, switching run or frequency command sources with the related terminal commands (e.g., SS1, SS2, SS4, SS8, Hz2/Hz1, Hz/PID, IVS, and LE) may cause a sudden motor start or an abrupt change in speed.
- Ensure safety before modifying customizable logic related function code settings (U codes and related function codes) or turning ON the "Cancel customizable logic" terminal command CLC. Depending upon the settings, such modification or cancellation of the customizable logic may change the operation sequence to cause a sudden motor start or an unexpected motor operation.

An accident or injuries could occur.

Maintenance and inspection, and parts replacement

WARNING A

- Before proceeding to the maintenance/inspection jobs, turn OFF the power and wait at least five minutes for inverters VF1A-G72A0S4 or below, or at least ten minutes for inverters VF1A-G85A0S4 or above. Make sure that the LED monitor and charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals $P(+)$ and $N(-)$ has dropped to the safe level (+25 VDC or below).

Otherwise, an electric shock could occur.

- Always carry out the daily and periodic inspections described in the instruction/user's manual. Use of the inverter for long periods of time without carrying out regular inspections could result in malfunction or damage, and an accident or fire could occur.
- It is recommended that periodic inspections be carryout every one to two years, however, they should be carried out more frequently depending on the usage conditions.
- It is recommended that parts for periodic replacement be replaced in accordance with the standard replacement frequency indicated in the user's manual. Use of the product for long periods of time without replacement could result in malfunction or damage, and an accident or fire could occur.
- Contact outputs [30A/B/C] use relays, and may remain ON, OFF, or undetermined when their lifetime is reached. In the interests of safety, equip the inverter with an external protective function.

Otherwise, an accident or fire could occur.

- Maintenance, inspection, and parts replacement should be made only by qualified persons.
- Take off the watch, rings and other metallic objects before starting work.
- Use insulated tools.

Otherwise, an electric shock or injuries could occur.

- Never modify the inverter.

Doing so could cause an electric shock or injuries.

- Treat the inverter as an industrial waste when disposing of it.

Otherwise injuries could occur.

FREE OF CHARGE WARRANTY PERIOD AND WARRANTY RANGE

Free of charge warranty period

(1) The product warranty period is "1 year from the date of purchase" or 18 months from the manufacturing date imprinted on the name place, whichever date is earlier.
(2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
(3) Furthermore, the warranty period for parts restored by IDEC's Service Department is " 6 months from the date that repairs are completed."

Warranty range

(1) In the event that breakdown occurs during the product's warranty period which is the responsibility of IDEC, IDEC will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.

- The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
- The breakdown was caused by the product other than the purchased or delivered IDEC's product.
- The breakdown was caused by the product other than IDEC's product, such as the customer's equipment or software design, etc.
- Concerning the IDEC's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
- The breakdown was caused by disassembly, modifications or repairs affected by a party other than IDEC.
- The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
- The breakdown was caused by a science or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
- The product was not used in the manner the product was originally intended to be used.
- The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
(2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
(3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

Icons

The following icons are used throughout this manual.

[^0]
Chapter 1 BEFORE USE

1.1 Acceptance Inspection (Nameplates and Inverter Type)

Unpack the package and check the following:
(1) An inverter and the following accessories are contained in the package.

Accessories - DC reactor (for ND-mode inverters of VF1A-G139AS4)

- Keypad rear cover (with three screws for securing the keypad)
- Instruction manual
- Wiring guide (for VF1A-G12A0S4 or below)
(2) The inverter has not been damaged during transportation-there should be no dents or parts missing.
(3) The inverter is the type you ordered. You can check the type and specifications on the main nameplate. (The main and sub nameplates are attached to the inverter as shown on Figure 1.2-1.)

(a) Main Nameplate
(b) Sub Nameplate

Figure 1.1-1 Nameplates

TYPE: Type of inverter

Figure 1.1-2 Type of inverter

The VF1A is available in four different drive modes--ND (Normal Duty), HD (Heavy Duty), HND (High, Normal Duty), and HHD (High, Heavy Duty). One of these modes should be selected to match the load property of your system. Specifications in each mode are printed on the main nameplate.

ND mode	Designed for general load applications. Overload capability: 120% for 1 min .
HD mode	: Designed for heavy duty load applications. Overload capability: 150% for 1 min .
HND mode	: Designed for general load applications. Overload capability: 120% for 1 min .
HHD mode	: Designed for heavy duty load applications. Overload capability: 150% for 1 min . and 200% for 0.5 s .
SOURCE	Number of input phases (three-phase: 3PH), input voltage, input frequency, input current
OUTPUT	Number of output phases, rated output voltage, output frequency range, rated output capacity, rated output current, and overload capability
SCCR	Short-circuit capacity
MASS	Mass of the inverter in kilogram
SER. No.	: Product number 68A123A0579E BB 601 - Production week This indicates the week number that is numbered from 1st week of January. The 1st week of January is indicated as '01'. Production year: Last digit of year Product version
CE	: Compliance with European Standards (See Appendix G Section G-1)
	: Compliance with UL Standards and Canadian Standards (cUL certification) (See Appendix G Section G-3)
UK	: Compliance with UK Standards (See Appendix G Section G-5)

If you suspect the product is not working properly or if you have any questions about your product, contact your IDEC representative.

1.2 External View and Terminal Blocks

(1) Outside and inside views

Figure 1.2-1 Outside and Inside Views of Inverters
(2) Warning plates and label

Figure 1.2-2 Warning Plates and Label

1.3 Precautions for Using Inverters

This section provides precautions in introducing inverters, e.g. precautions for installation environment, power supply lines, wiring, and connection to peripheral equipment. Be sure to observe those precautions.

1.3.1 Usage environment

Install the inverter in an environment that satisfies the requirements listed in Table 1.3-1.
Table 1.3-1 Usage Environment

Item	Specifications
Site location	Indoors
Ambient temperature	```Standard (Open Type) -10 to +50 }\mp@subsup{}{}{\circ}\textrm{C}(14\mathrm{ to 122}\mp@subsup{}{}{\circ}\textrm{F})(HHD/HND spec.) (Note 1 -10 to +40 }\mp@subsup{}{}{\circ}\textrm{C}(14\mathrm{ to 104 }\mp@subsup{}{}{\circ}\textrm{F})(HD/ND spec.```
Relative humidity	5 to 95\% RH (No condensation)
Atmosphere	The inverter must not be exposed to dust, direct sunlight, corrosive gases, flammable gases, oil mist, vapor or water drops. Pollution degree 2 (IEC60664-1) (Note 2) The atmosphere can contain a small amount of salt ($0.01 \mathrm{mg} / \mathrm{cm}^{2}$ or less per year). The inverter must not be subjected to sudden changes in temperature that will cause condensation to form.
Altitude	1,000 m (3,300 ft) max. (Note 3)
Atmospheric pressure	86 to 106 kPa
Vibration	3 mm (Max. amplitude) 2 to less than 9 Hz $9.8 \mathrm{~m} / \mathrm{s}^{2}$ 9 to less than 20 Hz $2 \mathrm{~m} / \mathrm{s}^{2}$ 20 to less than 55 Hz $1 \mathrm{~m} / \mathrm{s}^{2}$ 55 to less than 200 Hz

(Note 1) When inverters are mounted side-by-side without any clearance between them (VF1A-G72A0S4 or below), the ambient temperature should be within the range from -10 to $+40^{\circ} \mathrm{C}$.
(Note 2) Do not install the inverter in an environment where it may be exposed to lint, cotton waste or moist dust or dirt which will clog the heat sink of the inverter. If the inverter is to be used in such an environment, install it in a dustproof panel of your system.
(Note 3) If you use the inverter in an altitude above $1,000 \mathrm{~m}(3,300 \mathrm{ft})$, you should apply an output current derating factor as listed in Table 1.3-2.

Table 1.3-2 Output Current Derating Factor in Relation to Altitude

Altitude		Output current derating factor
$1,000 \mathrm{~m}$ or lower $\quad(3,300 \mathrm{ft}$ or lower $)$	1.00	
1,000 to 1500 m	$(3,300$ to $4,900 \mathrm{ft})$	0.97
1,500 to $2,000 \mathrm{~m}$	$(4,900$ to $6,600 \mathrm{ft})$	0.95
2,000 to $2,500 \mathrm{~m}$	$(6,600$ to $8,200 \mathrm{ft})$	0.91
2,500 to $3,000 \mathrm{~m}$	$(8,200$ to $9,800 \mathrm{ft})$	0.88

IDEC strongly recommends installing inverters in a panel for safety reasons, in particular, when installing the ones whose enclosure rating is IP00.
When installing the inverter in a place out of the specified environmental requirements, it is necessary to derate the inverter or consider the panel engineering design suitable for the special environment or the panel installation location. For details, consult your IDEC representative.
The special environments listed below require using the specially designed panel or considering the panel installation location.

Environments	Possible problems	Sample measures	Applications
Highly concentrated sulfidizing gas or other corrosive gases	Corrosive gases cause parts inside the inverter to corrode, resulting in an inverter malfunction.	Any of the following measures may be necessary. - Mount the inverter in a sealed panel with IP6X or air-purge mechanism. - Place the panel in a room free from influence of the gases.	Paper manufacturing, sewage disposal, sludge treatment, tire manufacturing, gypsum manufacturing, metal processing, and a particular process in textile factories.
A lot of conductive dust or foreign material (e.g., metal powders or shavings, carbon fibers, or carbon dust)	Entry of conductive dust into the inverter causes a short circuit.	Any of the following measures may be necessary. - Mount the inverter in a sealed panel. - Place the panel in a room free from influence of the conductive dust.	Wiredrawing machines, metal processing, extruding machines, printing presses, combustors, and industrial waste treatment.
A lot of fibrous or paper dust	Fibrous or paper dust accumulated on the heat sink lowers the cooling effect. Entry of dust into the inverter causes the electronic circuitry to malfunction.	Any of the following measures may be necessary. - Mount the inverter in a sealed panel that shuts out dust. - Ensure a maintenance space for periodical cleaning of the heat sink in panel engineering design. - Employ external cooling when mounting the inverter in a panel for easy maintenance and perform periodical maintenance.	Textile manufacturing and paper manufacturing.
High humidity or dew condensation	In an environment where a humidifier is used or where the air conditioner is not equipped with a dehumidifier, high humidity or dew condensation results, which causes a shortcircuiting or malfunction of electronic circuitry inside the inverter.	- Put a heating module such as a space heater in the panel.	Outdoor installation. Film manufacturing line, pumps and food processing.
Vibration or shock exceeding the specified level	If a large vibration or shock exceeding the specified level is applied to the inverter, for example, due to a carrier running on seam joints of rails or blasting at a construction site, the inverter structure gets damaged.	- Insert shock-absorbing materials between the mounting base of the inverter and the panel for safe mounting.	Installation of an inverter panel on a carrier or selfpropelled machine. Ventilating fan at a construction site or a press machine.
Fumigation for export packaging	Halogen compounds such as methyl bromide used in fumigation corrodes some parts inside the inverter.	- When exporting an inverter built in a panel or equipment, pack them in a previously fumigated wooden crate. - When packing an inverter alone for export, use a laminated veneer lumber (LVL).	Exporting.

1.3.2 Storage environment

The storage environment in which the inverter should be stored after purchase differs from the usage environment. Store the inverter in an environment that satisfies the requirements listed below.

[1] Temporary storage

Table 1.3-3 Storage and Transport Environments

Item	Specifications	
Storage temperature *1	During transport: -25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$	Places not subjected to abrupt temperature changes or condensation or freezing
	During storage: -25 to $+65^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+153^{\circ} \mathrm{F}\right)$	
Relative humidity	5 to $95 \% \mathrm{RH} * 2$	The inverter must not be exposed to dust, direct sunlight, corrosive or flammable gases, oil mist, vapor, water drops or vibration. The atmosphere must contain only a low level of salt. ($0.01 \mathrm{mg} / \mathrm{cm}^{2}$ or less per year)
Atmosphere	86 to 106 kPa (during storage)	
	70 to 106 kPa (during transportation)	

*1 Assuming comparatively short time storage, e.g., during transportation or the like.
*2 Even if the humidity is within the specified requirements, avoid such places where the inverter will be subjected to sudden changes in temperature that will cause condensation or freezing.

Precautions for temporary storage

(1) Do not leave the inverter directly on the floor.
(2) If the environment does not satisfy the specified requirements listed in Table 1.3-3, wrap the inverter in an airtight vinyl sheet or the like for storage.
(3) If the inverter is to be stored in a high-humidity environment, put a drying agent (such as silica gel) in the airtight package described in (2) above.

[2] Long-term storage

The long-term storage method of the inverter varies largely according to the environment of the storage site. General storage methods are described below.
(1) The storage site must satisfy the requirements specified for temporary storage.

However, for storage exceeding three months, the surrounding temperature range should be within the range from -10 to $+30^{\circ} \mathrm{C}\left(14\right.$ to $\left.86^{\circ} \mathrm{F}\right)$. This is to prevent electrolytic capacitors in the inverter from deterioration.
(2) The package must be airtight to protect the inverter from moisture. Add a drying agent inside the package to maintain the relative humidity inside the package within 70%.
(3) If the inverter has been installed to the equipment or panel at construction sites where it may be subjected to humidity, dust or dirt, then temporarily remove the inverter and store it in the environment specified in Table 1.3-3.

Precautions for storage over 1 year

If the inverter has not been powered on for a long time, the property of the electrolytic capacitors may deteriorate. Power the inverters on once a year and keep the inverters powering on for 30 to 60 minutes. Do not connect the inverters to the load circuit (secondary side) or run the inverter.

Chapter 2 INSTALLATION AND WIRING

2.1 Installation

(1) Installation Environment

Please install VF1A in locations which meet the conditions specified in Chapter 1 "1.3.1 Usage environment".

(2) Installation Surface

Please install the inverter on non-combustible matter such as metals. Also, do not mount it upside down or horizontally.

\lfloor WWRNING
Install on non-combustible matter such as metals. Risk of fire exists

(3) Surrounding Space

Secure the space shown in Figure 2.1-1 and Table 2.1-1. When enclosing VF1A in cabinets, be sure to provide adequate ventilation to the cabinet, as the surrounding temperature may rise. Do not contain it in small enclosures with low heat dissipation capacity.

Installation of Multiple Inverters

When installing 2 or more units in the same equipment or cabinet, generally mount them to the side of each other, not above each other. When the inverters are mounted above each other, attach partitioning boards to prevent that the heat dissipated from the lower inverter affects the upper inverter.
For types VF1A-G72A0S4 or below and for ambient temperature below $40^{\circ} \mathrm{C}$ only, the units can be installed side by side without any spacing between them. ($30^{\circ} \mathrm{C}$ or lower for ND and HD)

Table 2.1-1 Surrounding Space mm (inch)

Applicable Capacity	A	B	C
VF1A-G02A1S4 to VF1A-G72A0S4	10 (0.39)	100	$0^{* 1}$
	VF1A-G85A0S4 to VF1A-G139AS4		100 (3.9)

*1 A clearance of 50 mm is required to use RJ45 connector.

Figure 2.1-1 Installation Direction

C: Space in front of the inverter unit

- Installation with External Cooling

The external cooling installation reduces the generated heat inside the panel by dissipating approximately 70% of the total heat generated (total heat loss) by mounting the cooling fins protruding outside the equipment or cabinet.
Installation with external cooling is possible for types VF1A-G21A5S4 to VF1A-G72A0S4 by adding attachments (optional) for external cooling, and for types VF1A-G85A0S4 or above by moving the mounting bases.
(Please refer to the Doesa VF1A series User's Manual, Chapter 11 Item 11.14 for the external dimensions drawing of the external cooling attachment (optional)).

\triangle CAUTION

Prevent lint, wastepaper, wood shavings, dust, metal scrap, and other foreign material from entering the inverter or from attaching to the cooling fins.
Risk of fire and risk of accidents exist
To install the VF1A-G85A0S4 inverter with external cooling, change the mounting position of the mounting bases following the procedure in Figure 2.1-3.
As the type and number of screws differ by inverter type, please review Table 2.1-2.

Table 2.1-2 Type and Number of Screws, and Tightening Torque

Inverter type	Mounting base fixation screw	Case attachment screw	Tightening torque $N \cdot m$ $(\mathrm{lb}-\mathrm{in})$
VF1A-G85A0S4 to VF1A-G139AS4	$\mathrm{M} 6 \times 20$ (5 screws on top, 3 screws on bottom)	$\mathrm{M} 6 \times 20(2$ screws on top only)	$5.8(51.3)$

1) Remove all of the mounting base fixation screws and the case attachment screws on the top of the inverter.
2) Fix the mounting bases to the case attachment screw holes using the mounting base fixation screws. A few screws should remain after changing the position of the mounting bases.
3) Change the position of the mounting bases on the bottom side following the procedure in 1) and 2).

Figure 2.1-3 Method to Change the Mounting Base Positions

(CAUTION
Use the specified screws in changing the mounting bases.
Risk of fire and risk of accidents exist

Inverter unit installation screw size

Select the bolt size, considering the thickness of the mounting feet and installation surface so that the bolt protrudes from the nut by 2 threads or more.

Inverter type	Inverter fixation screw	Tightening torque N•m (Ib-in)
VF1A-G21A5S4 / VF1A-G28A5S4	M5 (4 screws)	$3.5(31.0)$
VF1A-G37A0S4 to VF1A-G139AS4	M8 (4 screws)	$13.5(119)$

2.2 Wiring

2.2.1 Basic connection diagram

- Standard terminal block board

Figure 2.2-1 Standard Terminal Block Board
(Note 1) Install recommended circuit breakers (MCCB) or residual-current-operated protective device (RCD)/ earth leakage breakers (ELCB) (with overcurrent protective function) on the inputs of each inverter (primary side) for wiring protection. Do not use breakers which exceed the recommended rated current.
(Note 2) Install recommended magnetic contactors (MC) as necessary on each inverter as these will be used to disconnect the inverter from the power supply separately from the MCCB or RCD / the ELCB. Additionally, when installing coils such as MC or solenoid close to the inverter, connect surge absorbers in parallel.
(Note 3) When it is desired to retain the alarm signal for the activation of the protective function even inverter main power supply is shut off, or when it is desired continuous display of the keypad, connect this terminal to the power supply. The inverter can be operated without connecting power to this terminal (applicable for types VF1A-G59A0S4 or above)
(Note 4) Remove the shorting bar between the inverter main circuit terminals P1-P(+) before connecting the direct current reactor (DCR) (option). It must be connected in the following cases: ND mode: Types VF1A-G139AS4.
Use the direct current reactor (option) when the power supply transformer capacity is above 500 kVA and the transformer capacity is over 10 times the rated capacity of the inverter, or when "thyristor load exists" in the same power system.
(Note 5) Types VF1A-G72A0S4 or below have built-in braking transistors, allowing direct connection of braking resistors between $\mathrm{P}(+)$-DB.
(Note 6) When connecting braking resistors to types VF1A-G85A0S4 or above, always add the braking unit (option). Connect the braking unit (option) between $\mathrm{P}(+)-\mathrm{N}(-)$. Auxiliary terminals [1] and [2] have polarity. Please connect as shown in the diagram.
(Note 7) This terminal is used for grounding the motor. Grounding the motor using this terminal is recommended in order to suppress inverter noise.
(Note 8) Use twisted lines or shielded lines for the control signals. Generally, the shielded line requires grounding, but when the effect of externally induced noise is large, connecting to [CM] may suppress the effect of noise. Separate the line from the main circuit wiring and do not enclose in the same duct. (Separation distance of over 10 cm is recommended.) When crossing the main circuit wiring, make the intersection perpendicular.
(Note 9) The various functions listed for terminals[X1] to [X5](digital inputs), terminals [Y1] to [Y2](transistor output), and terminal [FM] (monitor output) show the functions assigned as factory default.
(Note 10) The slide switches on the control printed circuit board define the settings for the inverter operation. For details, refer to "2.2.7 Operating slide switches".
(Note 11) Make the circuit breakers (MCCB) or the magnetic contactors (MC) trip by the thermal relay auxiliary contacts (manual recovery).
(Note 12) Shorting bars are connected between the safety function terminals [EN1], [EN2], and [PLC] as factory default. Remove the shorting bars when using this function.
(Note 13) OV and $O V$ are separated and insulated.
(Note 14) Charge lamp does not exist in the inverters VF1A-G44A0S4 or below.

Route the wiring following the steps below. The descriptions assume that the inverter is already fixed to the cabinet.

2.2.2 Removal and attachment of the front cover/ terminal cover and wiring guide

\triangle CAUTION

Always remove the RS-485 communication cable from the RJ-45 connector before removing the front cover. Risk of fire and risk of accidents exist.

(1) Types VF1A-G12A0S4 or below

1) Loosen the screws of the terminal cover. To remove the terminal cover, put your finger in the dimple of the terminal cover and then pull it up toward you.
2) Pull out the wiring guide toward you.
3) After routing the wires, attach the wiring guide and the terminal cover reversing the steps above.

Figure 2.2-2 Removal of the Terminal Cover and the Wiring Guide (for VF1A-G02A1S4)

(2) Types VF1A-G21A5S4 to VF1A-G44A0S4

1) Loosen the screws of the terminal cover. To remove the terminal cover, put your finger in the dimple of the terminal cover and then pull it up toward you.
2) Pull out the wiring guide toward you.
3) After routing the wires, attach the wiring guide and the terminal cover reversing the steps above.

Figure 2.2-3 Removal of the Terminal Cover and the Wiring Guide (for VF1A-G44A0S4)

(3) Types VF1A-G72A0S4/ VF1A-G85A0S4

1) Loosen the screws of the front cover. Hold both sides of the front cover with the hands, slide the cover downward, and pull. Then remove it to the upward direction.
2) Push the wiring guide upward and pull. Let the wiring guide slide and remove it.
3) After routing the wires, attach the wiring guide and the front cover reversing the steps above.

Figure 2.2-4 Removal of the Front Cover and the Wiring Guide (for VF1A-G72A0S4)

(4) Types VF1A-G85A0S4 or above

1) Loosen the screws of the front cover. Hold both sides of the front cover with the hands and slide it upward to remove.
2) After routing the wires, align the front cover top edge to the screw holes and attach the cover reversing the steps in Figure 2.2-5.

Tip Open the keypad case to view the control printed circuit board.

Figure 2.2-5 Removal of the front cover (for VF1A-G139AS4)

2.2.3 Precautions for wiring

Exercise caution for the following when wiring.
(1) Confirm that the supply voltage is within the input voltage range described on the rating plate.
(2) Always connect the power lines to the inverter main power input terminals L1/R, L2/S, L3/T (Three-phase). (The inverter will be damaged when power is applied if the power lines are connected to the wrong terminals.)
(3) Always route the ground line to prevent accidents such as electric shock and fire and to reduce noise.
(4) For the lines connecting to the main circuit terminals, use crimped terminals with insulating sleeves or use crimped terminals in conjunction with insulating sleeves for high connection reliability.
(5) Separate the routing of the lines connected to the main circuit input side terminals (primary side) and the output side terminals (secondary side) and the lines connected to the control circuit terminals.
The control circuit terminal lines should be routed as far as possible from the main circuit routing. Malfunction may occur due to noise.
(6) To prevent direct contact with the main circuit live sections (such as the main circuit terminal block), route the control circuit wiring inside the inverter as bundles using cable ties.
(7) After removing a main circuit terminal screw, always restore the terminal screw in position and tighten even if lines are not connected.
(8) The wiring guide is used to separately route the main circuit wiring and the control circuit wiring. The main circuit wiring and the control circuit wiring can be separated. Exercise caution for the order of wiring.

Case of VF1A-G02A1S4

Case of VF1A-G72A0S4

Handling the Wiring Guide

For inverter types VF1A-G02A1S4 to VF1A-G72A0S4, the wiring space may become insufficient when routing the main circuit wires, depending on the wire material used. In these cases, the relevant cut-off sections (see Figure 2.2-6, Figure 2.2-7) can be removed using a pair of nippers to secure routing space. Be warned that removing the wiring guide to accommodate the enlarged main circuit wiring will result in non-conformance to IP20 requirements.

Figure 2.2-6 Wiring Guide (VF1A-G44A0S4)

Figure 2.2-7 Wiring Guide (VF1A-G72A0S4)
(9) Depending on the inverter capacity, straight routing of the main circuit wires from the main circuit terminal block may not be possible. In these cases, route the wires as shown in the figure below and securely attach the front cover.

2.2.4 Precautions for long wiring (between inverter and motor)

(1) When multiple motors are connected to one inverter, the wiring length is the total of all wire lengths.
(2) Precautions shall be taken for high frequency leak current when the wiring length from the inverter to the motor is long, in this case the high frequency current may flow through the stray capacitance between the wires with various phases. The effect may cause the inverter to become overheated, or trip due to overcurrent. Leak current may increase and the accuracy of the displayed current may not be ensured. Depending on the conditions, excessive leak current may damage the inverter. To avoid the above problems when directly connecting an inverter to a motor, keep the wiring distance 50 m (164 ft) for inverters VF1A-G12A0S4 or below, and below 100 m (328 ft) for inverters VF1A-G21A5S4 or above.
To operate with longer wiring lengths than the ones above mentioned, reduce the carrier frequency or use an output circuit filter (OFL- $\square \square \square-\square \mathrm{A}$).
When multiple motors are operated in parallel connection configuration (group operation), and especially when shielded cables are used in the connections, the stray capacitance to ground is large. Reduce the carrier frequency or use output circuit filters (OFL- $\square \square \square-\square A$).

Without output circuit filter	With output circuit filter

When the output circuit filter is used, the total wiring length should be below 400 m (1312ft) in case of using

V/f control.
For motors with encoders, the wiring length between the inverter and motor should be below 100 m (328 ft). The restriction comes from the encoder specifications. For distances beyond 100 m (328ft), insulation converters should be used. Please contact IDEC when operating with wiring lengths beyond the upper limit.
(3) Precautions on the surge voltage when driving the inverter (especially for 400 V series motor) When motors are driven by inverters using the PWM method, the surge voltage generated by the switching of the inverter elements is added to the output voltage and is applied onto the motor terminals. Especially when the motor wiring length is long, the surge voltage can cause insulation degradation in the motor. Please perform one of the countermeasures shown below.

- Use motor with insulation enhancement
- Connect a surge suppression unit on the motor side (*1)
- Connect an output circuit filter (*1) to the inverter output side (secondary side)
- Reduce the wiring length from the inverter to the motor to less than 10 to 20 meters (33 to 66 ft).
*1 Please contact IDEC for details.
(4) When output circuit filters are attached to the inverter or when the wiring length is long, the voltage applied to the motor will decrease due to the voltage drop caused by the filter or wiring. In these cases, current oscillation and lack of torque may occur due to insufficient voltage.

WARNING \triangle

- For each inverter, connect to the power supply via circuit breaker and earth leakage breaker (with overcurrent protective function). Use recommended circuit breakers and earth leakage breakers and do not use breakers which exceed the recommended rated current.
- Always use the specified sizes for the wires.
- Tighten terminals with the defined tightening torque.
- When multiple combinations of inverters and motors exist, do not use multi-core cables for the purpose of bundling the various wires.
- Do not install surge killers on the inverter output side (secondary side)

Risk of fire exists.

- Ground the inverter in compliance with the national or local electric code.
- Always connect the ground line to the inverter grounding terminal [$\quad \mathrm{G}$]

Risk of electric shock and risk of fire exist.

- Qualified personnel should perform the wiring.
- Perform wiring after confirming that the power is shut off.

Risk of electric shock exists.

- Perform wiring only after the equipment is installed at the location.

Risk of electric shock and risk of injury exist.

- Confirm that the specifications (number of phases and the rated voltage) of the power supply input of the product match with the specifications of the power supply to be connected.
- Do not connect power supply lines to the inverter output terminals (U, V, W).

Risk of fire and risk of accidents exist.

2.2.5 Main circuit terminals

[1] Screw specifications

The specifications for the screws used in the main circuit wiring and the wire sizes are shown below. Exercise caution as the terminal position varies depending on inverter capacity. In the diagram in "[2] Terminal layout diagram (main circuit terminal)", the two ground terminals [0 G] are not differentiated for the input side (primary side) and the output side (secondary side).
Also, use crimped terminals with insulating sleeves compatible for main circuit or terminals with insulating tubes. The recommended wire sizes are shown depending on cabinet temperature and wire type.

Table 2.2-1 Screw Specifications (Three-phase 400V series)

Power System	Inverter type	See item$\text { [} 2 \text {] }$	Screw specifications					
			Main circuit		Grounding		Auxiliary power input for control [R0, T0]	
			Screw size (driver size)	Tightening torque $N \cdot m$ $(\mathrm{lb}-\mathrm{in})$	Screw size (driver size)	Tightening torque $\mathrm{N} \cdot \mathrm{m}$ $(\mathrm{lb}-\mathrm{in})$	Screw size	Tightening torque $\mathrm{N} \cdot \mathrm{m}$ ($\mathrm{lb}-\mathrm{in}$)
	VF1A-G02A1S4	Fig. a	M4	$\begin{gathered} 1.2 \\ (10.6) \end{gathered}$	M4	$\begin{gathered} 1.8 \\ (15.9) \end{gathered}$	-	-
	VF1A-G04A1S4							
	VF1A-G05A5S4							
	VF1A-G06A9S4							
	VF1A-G12A0S4	Fig. b						
	VF1A-G21A5S4	Fig. A	M5	$\begin{gathered} \hline 3.0 \\ (26.6) \end{gathered}$	M5	$\begin{gathered} 3.0 \\ (26.6) \end{gathered}$		
	VF1A-G28A5S4							
	VF1A-G37A0S4	Fig. B	$\begin{gathered} \text { M6 } \\ (\text { No. 3) } \end{gathered}$	$\begin{gathered} 5.8 \\ (51.3) \end{gathered}$	$\begin{gathered} \text { M6 } \\ \text { (No.3) } \end{gathered}$	$\begin{gathered} 5.8 \\ (51.3) \end{gathered}$		
	VF1A-G44A0S4							
	VF1A-G59A0S4	Fig. C	$\begin{gathered} \text { M6 } \\ \text { (No. 3) } \end{gathered}$	$\begin{gathered} 5.8 \\ (51.3) \end{gathered}$	$\begin{gathered} \text { M6 } \\ \text { (No.3) } \end{gathered}$	$\begin{gathered} 5.8 \\ (51.3) \end{gathered}$	M3.5	$\begin{gathered} 1.2 \\ (10.6) \end{gathered}$
	VF1A-G72A0S4							
	VF1A-G85A0S4	Fig. D	M8	$\begin{gathered} 13.5 \\ (119) \end{gathered}$	M8	$\begin{array}{r} 13.5 \\ (119) \end{array}$		
	VF1A-G105AS4							
	VF1A-G139AS4							

[2] Terminal layout diagram (main circuit terminal)

Figure A

Figure C

Figure B

Figure D

\triangle WARNING ©

The following terminals will have high voltage when power is ON.
Main circuit: L1/R, L2/S, L3/T, L1/L, L2/N, P1, P(+), N(-), DB, U, V, W, R0, T0
Insulation level
Main circuit - Casing : Basic insulation (overvoltage category III, degree of contamination 2)
Main circuit - Control circuit : Enhanced insulation (overvoltage category III, degree of contamination 2)
Risk of electric shock exists

Figure a

[3] Recommended wire size (main circuit terminals)

The following wires are recommended unless special requirements exist.

- 600 V vinyl insulation wire (IV wire)

This wire is used in circuits except the inverter control circuit. The wire is difficult to twist and is not recommended for inverter control circuit. The maximum allowable temperature for the insulated wire is $60^{\circ} \mathrm{C}$.

600 V type 2 vinyl insulation wire or 600 V polyethylene insulation wire (HIV wire)
In comparison to the IV wire, this wire is smaller, more flexible, and the maximum allowable temperature for the insulated wire is $75^{\circ} \mathrm{C}$ (higher), making it suitable for both the inverter main circuit and control circuit. However, the wiring distance should be short and the wire must be twisted for use in the inverter control circuit.

- 600 V cross-linked polyethylene insulation wire (FSLC wire)

This wire is used mainly in the main circuit and the grounding circuits. The size is even smaller than the IV wire or the HIV wire and also more flexible. Due to these features, the wire is used to reduce the area occupied by wiring and to improve work efficiency in high temperature areas. The maximum allowable temperature for the insulated wire is $90^{\circ} \mathrm{C}$. As a reference, Furukawa Electric Co., Ltd. produces Boardlex which satisfies these requirements.

Shielded-Twisted cables for internal wiring of electronic/electric instruments

This product is used in inverter control circuits. Use this wire with high shielding effect when risk of exposure to or effect of radiated noise and induced noise exists. Always use this wire when the wiring distance is long, even within the cabinet. Furukawa Electric's BEAMEX S shielded cables XEBV or XEWV satisfy these requirements.

Table 2.2-2 Recommended Wire Sizes (Common Terminals)

Common terminals	Recommended wire size $\left(\mathrm{mm}^{2}\right)[\mathrm{AWG}]$	Remarks
Auxiliary power input terminals for control circuit R0, T0	$2.0[14]$	VF1A-G59A0S4 or above

Refer to Appendix G-3 to conform the wire sizes to the UL Standards and Canadian Standards (cUL Certification).

(1) Wire sizes conforming to low voltage directive in Europe

Table 2.2-3 Recommended Wire Sizes, conforming to low voltage directive in Europe
ND Mode, Conforming to low voltage directive in Europe

		Inverter type	Recommended wire size (mm^{2})						
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [${ }^{(1) G]}$		Inverter output [U, V, W]	For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$	For braking resistor connection $[P(+), D B]$
			With DC reactor	Without DC reactor	With DC reactor	Without DC reactor			
	0.75	VF1A-G02A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	1.5	VF1A-G04A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	2.2	VF1A-G05A5S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	3.0	VF1A-G06A9S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	5.5	VF1A-G12A0S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	11	VF1A-G21A5S4	4	6	4	6	4	4	2.5
	15	VF1A-G28A5S4	6	10	6	10	6	6	2.5
	18.5	VF1A-G37A0S4	6	16	6	16	10	10	2.5
	22	VF1A-G44A0S4	10	16	10	16	10	16	2.5
	30	VF1A-G59A0S4	16	25	16	16	16	25	2.5
	37	VF1A-G72A0S4	25	35	16	16	25	25	2.5
	45	VF1A-G85A0S4	25	50	16	25	35	35	-
	55	VF1A-G105AS4	35	70	16	35	50	50	-
	75	VF1A-G139AS4	70	-	35	-	70	95	-

HD Mode, Conforming to low voltage directive in Europe

		Inverter type	Recommended wire size (mm^{2})						
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor	With DC reactor	Without DC reactor			
	0.75	VF1A-G02A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	1.1	VF1A-G04A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	2.2	VF1A-G05A5S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	3.0	VF1A-G06A9S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	5.5	VF1A-G12A0S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	7.5	VF1A-G21A5S4	2.5	4	2.5	4	2.5	2.5	2.5
	11	VF1A-G28A5S4	4	6	4	6	4	4	2.5
	15	VF1A-G37A0S4	6	10	6	10	6	6	2.5
	18.5	VF1A-G44A0S4	6	16	6	16	10	10	2.5
	22	VF1A-G59A0S4	10	16	10	16	10	16	2.5
	30	VF1A-G72A0S4	16	25	16	16	16	25	2.5
	37	VF1A-G85A0S4	25	35	16	16	25	25	-
	45	VF1A-G105AS4	25	50	16	25	35	35	-
	55	VF1A-G139AS4	35	70	16	35	50	50	-

The recommended wire sizes for the main circuit terminals assume using $70^{\circ} \mathrm{C} 600 \mathrm{VPVC}$ wire at $40^{\circ} \mathrm{C}$ ambient temperature.

Table 2.2-4 Recommended Wire Sizes, conforming to low voltage directive in Europe (continued)
HND Mode, Conforming to low voltage directive in Europe

$\begin{aligned} & \overline{0} \begin{array}{l} \varepsilon \\ \vdots \\ \vdots 0 \\ 0 \\ \vdots \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})						
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [${ }^{(1) G]}$		Inverter output [U, V, W]	For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor	With DC reactor	Without DC reactor			
	0.75	VF1A-G02A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	1.1	VF1A-G04A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	2.2	VF1A-G05A5S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	3.0	VF1A-G06A9S4*1	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	5.5	VF1A-G12A0S4 *1	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	7.5	VF1A-G21A5S4	2.5	4	2.5	4	2.5	2.5	2.5
	11	VF1A-G28A5S4	4	6	4	6	4	4	2.5
	15	VF1A-G37A0S4	6	10	6	10	6	6	2.5
	18.5	VF1A-G44A0S4	6	16	6	16	10	10	2.5
	22	VF1A-G59A0S4	10	16	10	16	10	16	2.5
	30	VF1A-G72A0S4	16	25	16	16	16	25	2.5
	37	VF1A-G85A0S4	25	35	16	16	25	25	-
	45	VF1A-G105AS4	25	50	16	25	35	35	-
	55	VF1A-G139AS4	35	70	16	35	50	50	-

HHD Mode, Conforming to low voltage directive in Europe

$\begin{aligned} & \bar{\omega} \begin{array}{l} \varepsilon \\ \vdots \\ \vdots 0 \\ 0 \\ 0 \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})						
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [${ }^{8} \mathrm{G}$]		Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection $[P(+), D B]$
			With DC reactor	Without DC reactor	With DC reactor	Without DC reactor			
	0.4	VF1A-G02A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	0.75	VF1A-G04A1S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	1.5	VF1A-G05A5S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	2.2	VF1A-G06A9S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	3.7	VF1A-G12A0S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	5.5	VF1A-G21A5S4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	7.5	VF1A-G28A5S4	2.5	4	2.5	4	2.5	2.5	2.5
	11	VF1A-G37A0S4	4	6	4	6	4	4	2.5
	15	VF1A-G44A0S4	6	10	6	10	6	6	2.5
	18.5	VF1A-G59A0S4	6	16	10	16	10	10	2.5
	22	VF1A-G72A0S4	10	16	10	16	10	16	2.5
	30	VF1A-G85A0S4	16	25	16	16	16	25	-
	37	VF1A-G105AS4	25	35	16	16	25	25	-
	45	VF1A-G139AS4	25	50	16	25	35	35	-

The recommended wire sizes for the main circuit terminals assume using $70^{\circ} \mathrm{C} 600 \mathrm{VPVC}$ wire at $40^{\circ} \mathrm{C}$ ambient temperature.
*1 ND-spec.

(2) Recommended Wire Sizes

1) Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

Table 2.2-5 Recommended wire size, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire
ND Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\omega} \begin{array}{l} \varepsilon \\ \vdots \\ \vdots 0 \\ 0 \\ 0 \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [$\left.{ }^{(10} \mathrm{G}\right]$	Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.5	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	11	VF1A-G21A5S4	2	5.5	3.5	2	3.5	2
	15	VF1A-G28A5S4	3.5	8	5.5	3.5	5.5	2
	18.5	VF1A-G37A0S4	5.5	14	5.5	5.5	8	2
	22	VF1A-G44A0S4	8	14	5.5	8	14	2
	30	VF1A-G59A0S4	14	22	$8^{* 1}$	14	14	2
	37	VF1A-G72A0S4	14	38	$8^{* 1}$	14	22	2
	45	VF1A-G85A0S4	22	38	8	22	38	-
	55	VF1A-G105AS4	38	60	14	38	38	-
	75	VF1A-G139AS4	60	-	14	60	60	-

HD Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\omega} \begin{array}{l} \varepsilon \\ \vdots \\ \vdots 0 \\ 0 \\ 0 \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [P(+), DB]
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	3.5	2	2	2	2
	11	VF1A-G28A5S4	2	5.5	3.5	3.5	3.5	2
	15	VF1A-G37A0S4	3.5	8	5.5	5.5	5.5	2
	18.5	VF1A-G44A0S4	5.5	14	5.5	5.5	8	2
	22	VF1A-G59A0S4	$8^{* 1}$	14	5.5	$8^{* 1}$	14	2
	30	VF1A-G72A0S4	14	22	$8^{* 1}$	14	14	2
	37	VF1A-G85A0S4	14	38	8	22	22	-
	45	VF1A-G105AS4	22	38	8	22	38	-
	55	VF1A-G139AS4	38	60	14	38	38	-

The recommended wire sizes for the main circuit terminals assume using $60^{\circ} \mathrm{C}$ IV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.

Table 2.2-6 Recommended wire sizes, Ambient temperature : Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire
HND Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [$\left.{ }^{(1)} \mathrm{G}\right]$	Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection$[P(+), D B]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4 *2	2	2	2	2	2	2
	5.5	VF1A-G12A0S4 *2	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	3.5	2	2	2	2
	11	VF1A-G28A5S4	2	5.5	3.5	3.5	3.5	2
	15	VF1A-G37A0S4	3.5	8	5.5	5.5	5.5	2
	18.5	VF1A-G44A0S4	5.5	14	5.5	5.5	8	2
	22	VF1A-G59A0S4	$8^{* 1}$	14	5.5	$8^{* 1}$	14	2
	30	VF1A-G72A0S4	14	22	$8^{* 1}$	14	14	2
	37	VF1A-G85A0S4	14	38	8	22	22	-
	45	VF1A-G105AS4	22	38	8	22	38	-
	55	VF1A-G139AS4	38	60	14	38	38	-

The recommended wire sizes for the main circuit terminals assume using $60^{\circ} \mathrm{C}$ IV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 ND-spec.
Table 2.2-7 Recommended wire sizes, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire (continued)
HHD Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\circ} \begin{array}{l} \varepsilon \\ \vdots \\ 0 \\ 0 \\ 0 \\ \omega \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [$\mathrm{U}, \mathrm{V}, \mathrm{W}$]	For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$	For braking resistor connection [P(+), DB]
			With DC reactor	Without DC reactor				
	0.4	VF1A-G02A1S4	2	2	2	2	2	2
	0.75	VF1A-G04A1S4	2	2	2	2	2	2
	1.5	VF1A-G05A5S4	2	2	2	2	2	2
	2.2	VF1A-G06A9S4	2	2	2	2	2	2
	3.7	VF1A-G12A0S4	2	2	2	2	2	2
	5.5	VF1A-G21A5S4	2	2	2	2	2	2
	7.5	VF1A-G28A5S4	2	3.5	2	2	2	2
	11	VF1A-G37A0S4	2	5.5	3.5	3.5	3.5	2
	15	VF1A-G44A0S4	3.5	8	5.5	3.5	5.5	2
	18.5	VF1A-G59A0S4	5.5	14	5.5	5.5	$8^{* 1}$	2
	22	VF1A-G72A0S4	$8^{* 1}$	14	5.5	$8^{* 1}$	14	2
	30	VF1A-G85A0S4	14	22	8	14	14	-
	37	VF1A-G105AS4	14	38	8	22	22	-
	45	VF1A-G139AS4	22	38	8	22	38	-

The recommended wire sizes for the main circuit terminals assume using $60^{\circ} \mathrm{C}$ IV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.

2) Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

Table 2.2-8 Recommended Wire Sizes, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire (continued)
ND Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [${ }^{(1) G]}$	Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.5	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	11	VF1A-G21A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G28A5S4	2	5.5	5.5	2	3.5	2
	18.5	VF1A-G37A0S4	3.5	8	5.5	3.5	5.5	2
	22	VF1A-G44A0S4	5.5	8	5.5	5.5	5.5	2
	30	VF1A-G59A0S4	$8^{* 1}$	14	$8^{* 1}$	$8^{* 1}$	14	2
	37	VF1A-G72A0S4	14	14	$8^{* 1}$	14	14	2
	45	VF1A-G85A0S4	14	22	8	14	22	-
	55	VF1A-G105AS4	22	38	14	22	38	-
	75	VF1A-G139AS4	38	-	14	38	38	-

HD Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input[L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G37A0S4	2	5.5	5.5	3.5	3.5	2
	18.5	VF1A-G44A0S4	3.5	8	5.5	3.5	5.5	2
	22	VF1A-G59A0S4	5.5	$8^{* 1}$	5.5	5.5	5.5	2
	30	VF1A-G72A0S4	$8{ }^{* 1}$	14	$8{ }^{* 1}$	$8^{* 1}$	14	2
	37	VF1A-G85A0S4	14	14	8	14	14	-
	45	VF1A-G105AS4	14	22	8	14	22	-
	55	VF1A-G139AS4	22	38	14	22	38	-

The recommended wire sizes for the main circuit terminals assume using $75^{\circ} \mathrm{C} 600 \mathrm{~V}$ HIV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.

Table 2.2-9 Recommended Wire Sizes, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire (continued)
HND Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \overline{0} \begin{array}{l} \varepsilon \\ \vdots \\ \vdots 0 \\ 0 \\ \vdots \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4 *2	2	2	2	2	2	2
	5.5	VF1A-G12A0S4 *2	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G37A0S4	2	5.5	5.5	3.5	3.5	2
	18.5	VF1A-G44A0S4	3.5	8	8	3.5	5.5	2
	22	VF1A-G59A0S4	5.5	$8^{* 1}$	5.5	5.5	5.5	2
	30	VF1A-G72A0S4	$8{ }^{* 1}$	14	$8{ }^{* 1}$	$8^{* 1}$	14	2
	37	VF1A-G85A0S4	14	14	8	14	14	-
	45	VF1A-G105AS4	14	22	8	14	22	-
	55	VF1A-G139AS4	22	38	14	22	38	-

The recommended wire sizes for the main circuit terminals assume using $75^{\circ} \mathrm{C} 600 \mathrm{~V}$ HIV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 ND-spec.

Table 2.2-10 Recommended Wire Sizes, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire (continued)
HHD Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$	For braking resistor connection$[P(+), D B]$
			With DC reactor	Without DC reactor				
	0.4	VF1A-G02A1S4	2	2	2	2	2	2
	0.75	VF1A-G04A1S4	2	2	2	2	2	2
	1.5	VF1A-G05A5S4	2	2	2	2	2	2
	2.2	VF1A-G06A9S4	2	2	2	2	2	2
	3.7	VF1A-G12A0S4	2	2	2	2	2	2
	5.5	VF1A-G21A5S4	2	2	2	2	2	2
	7.5	VF1A-G28A5S4	2	2	2	2	2	2
	11	VF1A-G37A0S4	2	3.5	3.5	2	2	2
	15	VF1A-G44A0S4	2	5.5	5.5	3.5	3.5	2
	18.5	VF1A-G59A0S4	$3.5{ }^{*}$	$8^{* 1}$	5.5	3.5 *	5.5	2
	22	VF1A-G72A0S4	5.5	$8^{* 1}$	5.5	5.5	5.5	2
	30	VF1A-G85A0S4	8	14	8	8	14	-
	37	VF1A-G105AS4	14	14	8	14	14	-
	45	VF1A-G139AS4	14	22	8	14	22	-

The recommended wire sizes for the main circuit terminals assume using $75^{\circ} \mathrm{C} 600 \mathrm{~V}$ HIV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 For compatible crimped terminals, please use model R5.5-6 by JST Mfg. Co., Ltd. or equivalent.

3) Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

Table 2.2-11 Recommended Wire Sizes, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire
ND Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\omega} \begin{array}{l} \varepsilon \\ \vdots \\ 0 \\ 0 \\ 0 \\ \omega \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [${ }^{(1 G G]}$	Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [P(+), DB]
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.5	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	11	VF1A-G21A5S4	2	2	3.5	2	2	2
	15	VF1A-G28A5S4	2	3.5	5.5	2	3.5	2
	18.5	VF1A-G37A0S4	3.5	5.5	5.5	3.5	3.5	2
	22	VF1A-G44A0S4	3.5	5.5	5.5	3.5	5.5	2
	30	VF1A-G59A0S4	5.5	$8^{* 1}$	$8^{* 1}$	5.5	$8^{* 1}$	2
	37	VF1A-G72A0S4	$8{ }^{* 1}$	14	$8^{* 1}$	$8^{* 1}$	14	2
	45	VF1A-G85A0S4	14	22	8	14	14	-
	55	VF1A-G105AS4	14	22	14	14	22	-
	75	VF1A-G139AS4	22	-	14	22	38	-

HD Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \overline{0} \begin{array}{l} \varepsilon \\ \vdots \\ 0 \\ 0 \\ 0 \\ \omega \\ \omega \end{array} \end{aligned}$	Std Applicabl e Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection$[P(+), D B]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	2	3.5	2	2	2
	15	VF1A-G37A0S4	2	3.5	5.5	2	3.5	2
	18.5	VF1A-G44A0S4	3.5	5.5	5.5	3.5	3.5	2
	22	VF1A-G59A0S4	$3.5{ }^{*}$	5.5	5.5	$3.5{ }^{*}$	5.5	2
	30	VF1A-G72A0S4	5.5	$8{ }^{* 1}$	$8^{* 1}$	5.5	$8{ }^{* 1}$	2
	37	VF1A-G85A0S4	8	14	8	8	14	-
	45	VF1A-G105AS4	14	22	8	14	14	-
	55	VF1A-G139AS4	14	22	14	14	22	-

The recommended wire sizes for the main circuit terminals assume using $90^{\circ} \mathrm{C} 600 \mathrm{~V}$ FSLC wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 For compatible crimped terminals, please use model R5.5-6 by JST Mfg. Co., Ltd. or equivalent.

Table 2.2-12 Recommended Wire Sizes, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire (continued)
HND Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [${ }^{(1 G G]}$	Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [P(+), DB]
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4 *3	2	2	2	2	2	2
	5.5	VF1A-G12A0S4 *3	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	2	3.5	2	2	2
	15	VF1A-G37A0S4	2	3.5	5.5	2	3.5	2
	18.5	VF1A-G44A0S4	3.5	5.5	5.5	3.5	3.5	2
	22	VF1A-G59A0S4	3.5 *2	5.5	5.5	$3.5{ }^{*}$	5.5	2
	30	VF1A-G72A0S4	5.5	$8^{* 1}$	$8^{* 1}$	5.5	$8^{* 1}$	2
	37	VF1A-G85A0S4	8	14	8	8	14	-
	45	VF1A-G105AS4	14	22	8	14	14	-
	55	VF1A-G139AS4	14	22	14	14	22	-

The recommended wire sizes for the main circuit terminals assume using $90^{\circ} \mathrm{C} 600 \mathrm{~V}$ FSLC wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 For compatible crimped terminals, please use model R5.5-6 by JST Mfg. Co., Ltd. or equivalent.
*3 ND-spec.
Table 2.2-13 Recommended Wire Sizes, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire (continued)
HHD Mode, Ambient temperature: Below $40^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.4	VF1A-G02A1S4	2	2	2	2	2	2
	0.75	VF1A-G04A1S4	2	2	2	2	2	2
	1.5	VF1A-G05A5S4	2	2	2	2	2	2
	2.2	VF1A-G06A9S4	2	2	2	2	2	2
	3.7	VF1A-G12A0S4	2	2	2	2	2	2
	5.5	VF1A-G21A5S4	2	2	2	2	2	2
	7.5	VF1A-G28A5S4	2	2	2	2	2	2
	11	VF1A-G37A0S4	2	2	3.5	2	2	2
	15	VF1A-G44A0S4	2	3.5	5.5	2	3.5	2
	18.5	VF1A-G59A0S4	$3.5{ }^{* 1}$	5.5	5.5	$3.5{ }^{* 1}$	$3.5{ }^{* 1}$	2
	22	VF1A-G72A0S4	$3.5{ }^{* 1}$	5.5	5.5	$3.5{ }^{* 1}$	5.5	2
	30	VF1A-G85A0S4	5.5	8	8	5.5	8	-
	37	VF1A-G105AS4	8	14	8	8	14	-
	45	VF1A-G139AS4	14	22	8	14	14	-

The recommended wire sizes for the main circuit terminals assume using $90^{\circ} \mathrm{C} 600 \mathrm{~V}$ FSLC wire.
*1 For compatible crimped terminals, please use model R5.5-6 by JST Mfg. Co., Ltd. or equivalent.

4) Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

Table 2.2-14 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire
ND Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \frac{\varepsilon}{\overline{0}} \\ & \stackrel{0}{\omega} \\ & \omega \\ & \omega \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input (Note 1) [L1/R, L2/S, L3/T]		Ground terminal (Note 1) [Inverter output (Note 1) [$\mathrm{U}, \mathrm{V}, \mathrm{W}$]	For DC reactor connection (Note 1) [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.5	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	3.5	2	2	2	2
	11	VF1A-G21A5S4	3.5	5.5	3.5	3.5	3.5	2
	15	VF1A-G28A5S4	5.5	14	5.5	5.5	5.5	2
	18.5	VF1A-G37A0S4	8	14	5.5	8	5.5	2
	22	VF1A-G44A0S4	8	14	5.5	14	8	2
	30	VF1A-G59A0S4	14	22	$8^{* 1}$	14	22	2
	37	VF1A-G72A0S4	22	38	$8^{* 1}$	22	38	2
	45	VF1A-G85A0S4	38	38	8	38	38	-
	55	VF1A-G105AS4	38	60	14	38	60	-
	75	VF1A-G139AS4	60	-	14	60	100^{*}	-

HD Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\varepsilon} \\ & 0 \\ & \omega \\ & \omega \\ & \omega \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input(Note 1) [L1/R, L2/S, L3/T]		Ground terminal (Note 1) [Inverter output (Note 1) [$\mathrm{U}, \mathrm{V}, \mathrm{W}$]	For DCreactorconnection(Note 1)${ }^{[P}[P 1, P(+)]$	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	3.5	2	2	2	2
	7.5	VF1A-G21A5S4	2	3.5	2	2	2	2
	11	VF1A-G28A5S4	3.5	5.5	3.5	3.5	3.5	2
	15	VF1A-G37A0S4	5.5	14	5.5	5.5	5.5	2
	18.5	VF1A-G44A0S4	8	14	5.5	8	5.5	2
	22	VF1A-G59A0S4	$8^{* 1}$	14	5.5	14	14	2
	30	VF1A-G72A0S4	14	22	$8^{* 1}$	14	22	2
	37	VF1A-G85A0S4	22	38	8	22	38	-
	45	VF1A-G105AS4	38	38	8	38	38	-
	55	VF1A-G139AS4	38	60	14	38	60	-

Note 1) The rated current must be reduced for operation (Rated current $\times 80 \%$). Recommended wire sizes assume these conditions.

The recommended wire sizes for the main circuit terminals assume using $60^{\circ} \mathrm{C}$ IV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 For compatible crimped terminals, please use model CB100-S8 by JST Mfg. Co., Ltd. or equivalent.

Table 2.2-15 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire (continued)
HND Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4 *3	2	2	2	2	2	2
	5.5	VF1A-G12A0S4 *3	2	3.5	2	2	2	2
	7.5	VF1A-G21A5S4	2	5.5	2	3.5	3.5	2
	11	VF1A-G28A5S4	5.5	8	3.5	5.5	5.5	2
	15	VF1A-G37A0S4	8	14	5.5	8	14	2
	18.5	VF1A-G44A0S4	14	22	5.5	14	14	2
	22	VF1A-G59A0S4	14	22	5.5	14	22	2
	30	VF1A-G72A0S4	22	38	$8{ }^{* 1}$	22	38	2
	37	VF1A-G85A0S4	38	60	8	38	38	-
	45	VF1A-G105AS4	38	60	8	38	60	-
	55	VF1A-G139AS4	60	100^{*}	14	60	60	-

The recommended wire sizes for the main circuit terminals assume using $60^{\circ} \mathrm{C}$ IV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 For compatible crimped terminals, please use model CB100-S8 by JST Mfg. Co., Ltd. or equivalent.
*3 ND-spec.
Table 2.2-16 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire (continued)
HHD Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $60^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\infty} \begin{array}{l} \varepsilon \\ \vdots \\ 0 \\ 0 \\ 0 \\ \omega \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [P(+), DB]
			With DC reactor	Without DC reactor				
	0.4	VF1A-G02A1S4	2	2	2	2	2	2
	0.75	VF1A-G04A1S4	2	2	2	2	2	2
	1.5	VF1A-G05A5S4	2	2	2	2	2	2
	2.2	VF1A-G06A9S4	2	2	2	2	2	2
	3.7	VF1A-G12A0S4	2	2	2	2	2	2
	5.5	VF1A-G21A5S4	2	3.5	2	2	2	2
	7.5	VF1A-G28A5S4	2	5.5	2	3.5	3.5	2
	11	VF1A-G37A0S4	5.5	8	3.5	5.5	5.5	2
	15	VF1A-G44A0S4	8	14	5.5	8	14	2
	18.5	VF1A-G59A0S4	14	22	5.5	14	14	2
	22	VF1A-G72A0S4	14	22	5.5	14	22	2
	30	VF1A-G85A0S4	22	38	8	22	38	-
	37	VF1A-G105AS4	38	60	8	38	38	-
	45	VF1A-G139AS4	38	60	8	38	60	-

The recommended wire sizes for the main circuit terminals assume using $60^{\circ} \mathrm{C}$ IV wire.

5) Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

Table 2.2-17 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire
ND Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \varepsilon \\ & \hline \\ & \omega \\ & \omega \\ & \omega \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input (Note 1) [L1/R, L2/S, L3/T]		Ground terminal (Note 1) [Inverter output (Note 1) [U, V, W]	For DC reactor connection (Note 1) [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.5	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	11	VF1A-G21A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G28A5S4	2	5.5	5.5	2	2	2
	18.5	VF1A-G37A0S4	3.5	5.5	5.5	3.5	3.5	2
	22	VF1A-G44A0S4	5.5	8	5.5	5.5	5.5	2
	30	VF1A-G59A0S4	$8{ }^{* 1}$	14	$8^{* 1}$	$8^{* 1}$	14	2
	37	VF1A-G72A0S4	$8{ }^{* 1}$	14	$8{ }^{* 1}$	14	14	2
	45	VF1A-G85A0S4	14	22	8	14	22	-
	55	VF1A-G105AS4	22	38	14	22	22	-
	75	VF1A-G139AS4	38	-	14	38	38	-

HD Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input (Note 1) [L1/R, L2/S, L3/T]		Ground terminal (Note 1) [${ }^{(1) G]}$	Inverter output (Note 1) [U, V, W]	For DC reactor connection (Note 1) [P1, P(+)]	For braking resistor connection [P(+), DB]
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G37A0S4	2	5.5	5.5	3.5	2	2
	18.5	VF1A-G44A0S4	3.5	5.5	5.5	3.5	3.5	2
	22	VF1A-G59A0S4	5.5	$8^{* 1}$	5.5	5.5	5.5	2
	30	VF1A-G72A0S4	$8^{* 1}$	14	$8^{* 1}$	$8^{* 1}$	14	2
	37	VF1A-G85A0S4	8	14	8	14	14	-
	45	VF1A-G105AS4	14	22	8	14	22	-
	55	VF1A-G139AS4	22	38	14	22	22	-

Note 1) The rated current must be reduced for operation (Rated current $\times 80 \%$). Recommended wire sizes assume these conditions.

The recommended wire sizes for the main circuit terminals assume using $75^{\circ} \mathrm{C} 600 \mathrm{~V}$ HIV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.

Table 2.2-18 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire (continued)
HND Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection[P1, P(+)]	For braking resistor connection[P(+), DB]
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4 *2	2	2	2	2	2	2
	5.5	VF1A-G12A0S4 *2	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	3.5	3.5	2	3.5	2
	15	VF1A-G37A0S4	3.5	5.5	3.5	5.5	5.5	2
	18.5	VF1A-G44A0S4	5.5	8	5.5	5.5	5.5	2
	22	VF1A-G59A0S4	5.5	14	5.5	$8^{* 1}$	$8^{* 1}$	2
	30	VF1A-G72A0S4	14	14	$8^{* 1}$	14	14	2
	37	VF1A-G85A0S4	14	22	8	14	22	-
	45	VF1A-G105AS4	22	38	8	22	22	-
	55	VF1A-G139AS4	22	38	14	38	38	-

Note 1) The rated current must be reduced for operation (Rated current x 80\%). Recommended wire sizes assume these conditions.
The recommended wire sizes for the main circuit terminals assume using $75^{\circ} \mathrm{C} 600 \mathrm{~V}$ HIV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 ND-spec.
Table 2.2-19 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire (continued)
HHD Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $75^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\omega} \begin{array}{c} \varepsilon \\ \vdots \\ 0 \\ 0 \\ 0 \\ \omega \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [$\left.{ }^{(3)} \mathrm{G}\right]$	Inverter output [U, V, W]	For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$	For braking resistor connection [P(+), DB]
			With DC reactor	Without DC reactor				
	0.4	VF1A-G02A1S4	2	2	2	2	2	2
	0.75	VF1A-G04A1S4	2	2	2	2	2	2
	1.5	VF1A-G05A5S4	2	2	2	2	2	2
	2.2	VF1A-G06A9S4	2	2	2	2	2	2
	3.7	VF1A-G12A0S4	2	2	2	2	2	2
	5.5	VF1A-G21A5S4	2	2	2	2	2	2
	7.5	VF1A-G28A5S4	2	2	2	2	2	2
	11	VF1A-G37A0S4	2	3.5	3.5	2	3.5	2
	15	VF1A-G44A0S4	3.5	5.5	5.5	3.5	5.5	2
	18.5	VF1A-G59A0S4	5.5	$8^{* 1}$	5.5	5.5	5.5	2
	22	VF1A-G72A0S4	5.5	14	5.5	$8^{* 1}$	$8^{* 1}$	2
	30	VF1A-G85A0S4	14	14	8	14	14	-
	37	VF1A-G105AS4	14	22	8	14	22	-
	45	VF1A-G139AS4	22	38	8	22	22	-

The recommended wire sizes for the main circuit terminals assume using $75^{\circ} \mathrm{C} 600 \mathrm{~V}$ HIV wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.

6) Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

Table 2.2-20 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire
ND Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \bar{\varepsilon} \\ & 0 \\ & \omega \\ & \omega \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input (Note 1) [L1/R, L2/S, L3/T]		Ground terminal (Note 1) [结G]	Inverter output (Note 1) [U, V, W]	For DC reactor connection (Note 1) [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			$\begin{aligned} & \text { With DC } \\ & \text { reactor } \end{aligned}$	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.5	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	11	VF1A-G21A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G28A5S4	2	5.5	5.5	2	3.5	2
	18.5	VF1A-G37A0S4	3.5	5.5	5.5	3.5	5.5	2
	22	VF1A-G44A0S4	5.5	8	5.5	5.5	5.5	2
	30	VF1A-G59A0S4	5.5	$8^{* 1}$	$8{ }^{* 1}$	5.5	5.5	2
	37	VF1A-G72A0S4	5.5	14	$8^{* 1}$	$8^{* 1}$	$8^{* 1}$	2
	45	VF1A-G85A0S4	8	14	8	8	14	-
	55	VF1A-G105AS4	14	22	14	14	14	-
	75	VF1A-G139AS4	22	-	14	22	38	-

Note 1) The rated current must be reduced for operation (Rated current $\times 80 \%$). Recommended wire sizes assume these conditions.

HD Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

E\pm0000000	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input (Note 1) [L1/R, L2/S, L3/T]		Ground terminal (Note 1) [${ }^{(1) G]}$	Inverter output (Note 1) [$\mathrm{U}, \mathrm{V}, \mathrm{W}$]	For DC reactor connection (Note 1) [$\mathrm{P} 1, \mathrm{P}(+)$]	For braking resistor connection $[P(+), D B]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4	2	2	2	2	2	2
	5.5	VF1A-G12A0S4	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G37A0S4	2	5.5	5.5	2	3.5	2
	18.5	VF1A-G44A0S4	3.5	5.5	5.5	3.5	5.5	2
	22	VF1A-G59A0S4	3.5 *	5.5	5.5	3.5 *	3.5 *	2
	30	VF1A-G72A0S4	5.5	$8{ }^{* 1}$	$8^{* 1}$	5.5	5.5	2
	37	VF1A-G85A0S4	5.5	14	8	8	8	-
	45	VF1A-G105AS4	8	14	8	14	14	-
	55	VF1A-G139AS4	14	22	14	14	14	-

Note 1) The rated current must be reduced for operation (Rated current x 80\%). Recommended wire sizes assume these conditions.

The recommended wire sizes for the main circuit terminals assume using $90^{\circ} \mathrm{C} 600 \mathrm{~V}$ FSLC wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 For compatible crimped terminals, please use model R5.5-6 by JST Mfg. Co., Ltd. or equivalent.

Table 2.2-21 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire (continued)
HND Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [Inverter output [U, V, W]	For DC reactor connection [P1, P(+)]	For braking resistor connection [$\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.75	VF1A-G02A1S4	2	2	2	2	2	2
	1.1	VF1A-G04A1S4	2	2	2	2	2	2
	2.2	VF1A-G05A5S4	2	2	2	2	2	2
	3.0	VF1A-G06A9S4 *2	2	2	2	2	2	2
	5.5	VF1A-G12A0S4 *2	2	2	2	2	2	2
	7.5	VF1A-G21A5S4	2	2	2	2	2	2
	11	VF1A-G28A5S4	2	3.5	3.5	2	2	2
	15	VF1A-G37A0S4	2	5.5	5.5	2	3.5	2
	18.5	VF1A-G44A0S4	3.5	5.5	5.5	3.5	5.5	2
	22	VF1A-G59A0S4	5.5	$8^{* 1}$	5.5	5.5	5.5	2
	30	VF1A-G72A0S4	$8{ }^{* 1}$	14	$8{ }^{* 1}$	$8^{* 1}$	$8^{* 1}$	2
	37	VF1A-G85A0S4	8	14	8	14	14	-
	45	VF1A-G105AS4	14	22	8	14	22	-
	55	VF1A-G139AS4	22	38	14	22	22	-

The recommended wire sizes for the main circuit terminals assume using $90^{\circ} \mathrm{C} 600 \mathrm{~V}$ FSLC wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 ND-spec
Table 2.2-22 Recommended Wire Sizes, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire (continued)
HHD Mode, Ambient temperature: Below $50^{\circ} \mathrm{C}$, Wire type: $90^{\circ} \mathrm{C}$ wire

$\begin{aligned} & \dot{ \pm} \begin{array}{c} \varepsilon \\ 0 \\ 0 \\ 0 \\ 0 \\ \omega \end{array} \end{aligned}$	Std Applicable Motor (kW)	Inverter type	Recommended wire size (mm^{2})					
			Main power supply input [L1/R, L2/S, L3/T]		Ground terminal [${ }^{(3)}$ G]	Inverter output [$\mathrm{U}, \mathrm{V}, \mathrm{W}$]	For DC reactor connection [P1, P(+)]	For braking resistor connection$[\mathrm{P}(+), \mathrm{DB}]$
			With DC reactor	Without DC reactor				
	0.4	VF1A-G02A1S4	2	2	2	2	2	2
	0.75	VF1A-G04A1S4	2	2	2	2	2	2
	1.5	VF1A-G05A5S4	2	2	2	2	2	2
	2.2	VF1A-G06A9S4	2	2	2	2	2	2
	3.7	VF1A-G12A0S4	2	2	2	2	2	2
	5.5	VF1A-G21A5S4	2	2	2	2	2	2
	7.5	VF1A-G28A5S4	2	2	2	2	2	2
	11	VF1A-G37A0S4	2	3.5	3.5	2	2	2
	15	VF1A-G44A0S4	2	5.5	5.5	2	3.5	2
	18.5	VF1A-G59A0S4	$3.5{ }^{*}$	5.5	5.5	$3.5{ }^{*}$	5.5	2
	22	VF1A-G72A0S4	5.5	$8{ }^{* 1}$	5.5	5.5	5.5	2
	30	VF1A-G85A0S4	8	14	8	8	8	-
	37	VF1A-G105AS4	8	14	8	14	14	-
	45	VF1A-G139AS4	14	22	8	14	22	-

The recommended wire sizes for the main circuit terminals assume using $90^{\circ} \mathrm{C} 600 \mathrm{~V}$ FSLC wire.
*1 For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*2 For compatible crimped terminals, please use model R5.5-6 by JST Mfg. Co., Ltd. or equivalent.

[4] Description of terminal functions (main circuit terminal)

Classification	Terminal symbol	Terminal name	Specification
	L1/R, L2/S, L3/T	Main power input	Terminals to connect Three-phase power source.
	L1/L, L2/N	Main power input	Terminals to connect Single-phase power source.
	U, V, W	Inverter output	Terminals to connect Three-phase motors.
	$\mathrm{P}(+), \mathrm{P} 1$	For direct current reactor connection	Terminals to connect DC reactor (DCR) for power factor enhancement. It must be connected in the following cases: ND mode: Types VF1A-G139AS4.
	P (+), N (-)	For direct current bus connection	Terminals to connect direct current intermediate circuit of other inverters and PWM converters.
	$\mathrm{P}(+), \mathrm{DB}$	For braking resistor connection	Terminals to connect a braking resistor (optional). Wiring length: Below 5 meters. (Types VF1A-G72A0S4 or below)
	ABG	For inverter chassis (case) grounding	Grounding terminal for inverter chassis (case).
	R0, T0	Auxiliary power input for control circuit	When it is desired to retain the alarm signal for the activation of the protective function even inverter main power supply shut off or when continuous display of the keypad is desired, connect this terminal to the power supply. (Types VF1A-G59A0S4 or above)

Follow the sequence below when wiring.
(1) Inverter ground terminal (AG)
(2) Inverter output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$), motor ground terminal (
(3) Direct current reactor connection terminals (P1, P(+))*
(4) Braking resistor connection terminals ($\left.\mathrm{P}(+)^{2}, \mathrm{DB}\right)^{*}$
(5) Direct current bus connection terminals $(\mathrm{P}(+), \mathrm{N}(-))^{*}$
(6) Main power supply input terminals (L1/R, L2/S, L3/T) or (L1/L, L2/N)
(7) Auxiliary power input for control circuit (RO,T0) *
*: Connect if necessary.
Connect in the order (1), (2), (6), (3), (4), (5), (7) for the following models.
VF1A-G02A1S4 to VF1A-G12A0S4
(1) Main power source input terminals L1/R, L2/S, L3/T (Three-phase input) or L1/L, L2/N (Single-phase input)
Connect the Three-phase power source for Three-phase input model.Connect the Single-phase power source for Single-phase input model.

1) For safety, confirm that the circuit breaker (MCCB) or the magnetic contactor (MC) is OFF prior to wiring the power lines.
2) Connect the power lines ($\mathrm{L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}$) or ($\mathrm{L} 1 / \mathrm{L}, \mathrm{L} 2 / \mathrm{N}$) to MCCB or residual-current-operated protective device (RCD)/ the earth leakage breaker (ELCB)*, or connect via MC if necessary. The phase sequence of the power lines and the inverter do not need to be matched.
*: With overcurrent protection
ip In emergencies such as when the inverter protective function is activated, disconnecting the inverter from the power source to prevent magnification of failure or accident may be desired. Installation of an MC which allows manual disconnection of the power source is recommended.
(2) Inverter output terminals $\mathbf{U}, \mathrm{V}, \mathbf{W}$, motor ground terminal 今心
3) Connect the Three-phase motor terminals U, V, and W while matching the phase sequence.
4) Connect the ground line of the outputs ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) to the ground terminal ($(\mathrm{\theta} \mathrm{G})$.

Note When multiple combinations of inverters and motors exist, do not use multi-core cables for the purpose of bundling the various wires.

(3) Direct current reactor connection terminals P1, P(+)

Connect the direct current reactor (DCR) for power factor enhancement.

1) Remove the shorting bar from terminals $\mathrm{P} 1-\mathrm{P}(+)$.
2) Connect the P1, $\mathrm{P}(+)$ terminals to the direct current reactor (option).

Note - Keep the wiring length below 10 meters.

- Do not remove the shorting bar if the direct current reactor is not used.
- When the capacity of the motor to be used is above 75 kW , always connect the direct current reactor.
- Direct current reactors do not have to be connected when connecting PWM converters.

\triangle WARNING

Always connect the direct current reactor (option) when the power supply transformer capacity is above 500 kVA and is over 10 times the rated capacity of the inverter.
Risk of fire exists.
(4) Braking resistor connection terminals $\mathrm{P}(+) \mathrm{DB}$ (Types VF1A-G72A0S4 or below)

1) Connect terminals $\mathrm{P}(+)$, DB of the inverter to braking resistor terminals (option).
2) Mount the inverter main body and the braking resistor such that the wiring length will be less than 5 m (16ft) and route the two wires twisted or in contact with each other (parallel).

\triangle WARNING

Do not connect to terminals other than $\mathrm{P}(+)$-DB when connecting braking resistors.

Risk of fire exists.

(5) Direct current bus terminals $\mathrm{P}(+), \mathrm{N}(-)$

1) Connecting the braking unit/braking resistor (option)

Inverter type	Braking transistor	Additional instruments for connection (option)	Instruments connected/connection terminals
Types VF1A-G85A0S4 or below	Not equipped	Braking unit	Inverter $(\mathrm{P}(+), \mathrm{N}(-))$ - Braking unit $(\mathrm{P}(+), \mathrm{N}(-))$
		Braking resistor	Braking unit (P(+)R,DB) - Braking resistor (P, DB)

Braking units are necessary when using braking resistors for types VF1A-G85A0S4 or above.
Connect terminals $\mathrm{P}(+), \mathrm{N}(-)$ of the braking unit to the inverter terminals $\mathrm{P}(+), \mathrm{N}(-)$. Mount the equipment such that the wiring length is below 5 m (16ft) and route the two wires twisted or in contact with each other (parallel).
Connect the terminals $\mathrm{P}(+) \mathrm{R}$, DB of the braking unit to terminals $\mathrm{P}(+)$, DB of the braking resistor. Mount the equipment such that the wiring length is below 10 m (33 ft) and route the two wires twisted or in contact with each other (parallel).
For details such as other wirings, refer to the Doesa VF1A series user's manual for the braking unit.

Figure 2.2-8
2) Connection of other instruments

The direct current intermediate circuit of other inverters and PWM converters can be connected.

(6) Inverter ground terminal ©®G

This terminal is the ground terminal for the inverter chassis (case). Always connect to ground for safety and as a countermeasure for noise. To prevent accidents such as electric shock and fire, the electrical safety standards require grounding construction for metallic frames in electric instruments.
Follow the steps below in connecting the ground terminal on the power supply side.

1) Ground the inverter in compliance with the national or local electric code.
2) The grounding wire size should be as described before in this chapter, with large surface area, and as short as possible.

(7) Auxiliary power input terminals for control circuit RO, TO (Types VF1A-G59A0S4 or above)

The inverter can be operated without power input to the auxiliary power input terminals for control circuit. However, the inverter output signals and the keypad display will be shut off when the inverter main power is shut off and the control power source is lost.
When it is desired to retain the alarm signal for the activation of the protective function even inverter main power supply shut off, or when continuous display of the keypad is desired, connect these terminals to the power supply. When the inverter input side has a magnetic contactor (MC), wire from the input side (primary side) of the magnetic contactor (MC).
Terminal rating: AC 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, maximum current 0.5 A (400 V series)
Note
When using the earth leakage breaker, connect terminals R0, T0 to the output side of the earth leakage breaker.
When connections are made to the input side of the earth leakage breaker, the earth leakage breaker will malfunction because the inverter input is three-phase and the terminals RO, T0 are single phase. When connecting to terminals RO, TO to the input side of the earth leakage breaker, make sure that the connection is done through an insulating transformer or, alternatively, through the auxiliary B contacts of the magnetic contactor as shown in the figure below.

Figure 2.2-9 Connection of the Earth Leakage Breaker

2.2.6 Control circuit terminals (common to all models)

[1] Screw specifications and recommended wire size (control circuit terminals)

The screw specifications and wire sizes to be used for control circuit wiring are shown below.
The control circuit terminal board differs depending on the destination.
Table 2.2-23 Screw Specifications and Recommended Wire Sizes

Terminal symbol	Screw specification		Allowable wire sizes	Driver (shape of tip)	Removal size of wire cover\qquad ℓ	Gauge size to insert wire
	Size	Tightening torque				
$\begin{gathered} \text { 30A, 30B, 30C } \\ \text { EN1, EN2 } \end{gathered}$	M3	$\begin{gathered} 0.5 \mathrm{~N} \cdot \mathrm{~m} \\ (4.43 \mathrm{lb}-\mathrm{in}) \end{gathered}$	0.14 to $1.5 \mathrm{~mm}^{2}$ (AWG26 to 16)	$\begin{gathered} \text { Minus } \\ (0.6 \mathrm{~mm} \times 3.5 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~mm} \\ (0.24 \mathrm{in}) \end{gathered}$	$\mathrm{A} 1^{* 1}$
Others	M2	$\begin{gathered} 0.19 \mathrm{~N} \cdot \mathrm{~m} \\ (1.68 \mathrm{lb}-\mathrm{in}) \end{gathered}$	0.25 to $1 \mathrm{~mm}^{2}$ (AWG24 to 18)	$\begin{gathered} \text { Minus } \\ (0.4 \mathrm{~mm} \times 2.5 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 5 \mathrm{~mm} \\ (0.20 \mathrm{in}) \end{gathered}$	$\varphi 1.6$

* Recommended rod terminal: Phoenix Contact Refer to Table 2.2-24 for details.
*1 Defined according to IEC/EN 60947-1.
Table 2.2-24 Recommended Rod Terminals

Screw size		Wire size	Type		
		With insulating collar	Without insulating collar		
M3	M2		$0.25 \mathrm{~mm}^{2}$ (AWG24)	AI 0.25-6 BU	A 0.25-7
		$0.34 \mathrm{~mm}^{2}$ (AWG22)	Al 0.34-6 TQ	A 0.34-7	
		$0.5 \mathrm{~mm}^{2}$ (AWG20)	Al 0.5-6 WH	A 0.5-6	
		$0.75 \mathrm{~mm}^{2}$ (AWG18)	Al 0.75-6 GY	A 0.75-6	
		$1 \mathrm{~mm}^{2}$ (AWG18)	Al 1-6 RD	A 1-6	
		1.5 mm² (AWG16)	Al 1.5-6 BK	A 1.5-7	

Note) When sizes exceeding the recommended wire sizes are used, the front cover may be pushed outward depending on the number of wires, causing erroneous operation of the keypad.
[2] Terminal layout diagram (control circuit terminal)

WARNING ©

The following terminals may have high voltage when the power is ON .
Control terminals: AUX-contact (30A, 30B, 30C)
Insulation level
Contact output - control circuit : Enhanced insulation (overvoltage category II, degree of contamination 2)
Risk of electric shock exists

[3] Description of terminal functions (control circuit terminal)

Abstract

WARNING \triangle Generally, the insulation for control signal lines is not enhanced. When the control signal lines come into direct contact with the main circuit live section, the insulation cover may be damaged. High voltage of the main circuit may be applied on the control signal lines, so exercise caution such that the main circuit live sections do not contact the control signal lines.

Risk of accidents and risk of electric shock exist.

NOAUTION
Noise is generated by the inverter, motor, and wiring.
Exercise caution to prevent malfunction of peripheral sensors and instruments.
Risk of accidents exists.

Table 2.2-25 shows the functional explanations for the control circuit terminals. The connection method of the control circuit terminals differs depending on the functional code setting matching the purpose of inverter operation.
Properly wire such that the impact of noise generated by the main circuit wiring is reduced.
Table 2.2-25 Functional Description of Control Circuit Terminals

(\%	Terminal symbol	Terminal name	Functional description
	[13]	Power supply for the potentiometer	The terminal is used for the power supply ($\mathrm{DC}+10 \mathrm{~V} 10 \mathrm{~mA}$ Max) for the external frequency command potentiometer (variable resistor: 1 to $5 \mathrm{k} \Omega$). Connect variable resistors larger than $1 / 2 \mathrm{~W}$.
	[12]	Analog setup voltage input	(1) Frequency is set up according to the external analog voltage input command value. Normal operation - DC0 to $+10 \mathrm{~V} / 0$ to $100(\%)$ (DC0 to $+5 \mathrm{~V} / 0$ to 100%) - DC0 to $\pm 10 \mathrm{~V} / 0$ to ± 100 (\%) (DC 0 to $\pm 5 \mathrm{~V} / 0$ to $\pm 100 \%$) Reverse operation - DC+10 to $0 \mathrm{~V} / 0$ to $100(\%)(D C+5$ to $0 \mathrm{~V} / 0$ to 100%) - $\mathrm{DC} \pm 10$ to $0 \mathrm{~V} / 0$ to ± 100 (\%) ($\mathrm{DC} \pm 5$ to $0 \mathrm{~V} / 0$ to $\pm 100 \%$) (2) The terminal can be assigned to PID command, feedback signal of PID control, auxiliary frequency setup, ratio setup, torque limit setup, and analog input monitor aside from the frequency setup by analog input. (3) Hardware specification * Input impedance: 22 ($k \Omega$) * Up to $\mathrm{DC} \pm 15 \mathrm{~V}$ can be input. However, input exceeding $\mathrm{DC} \pm 10 \mathrm{~V}$ will be recognized as $D C \pm 10 \mathrm{~V}$.
	[C1]	Analog setup current input (C1 function)	(1) Frequency is set up according to the external analog current input command value. Normal operation - DC4 to $20 \mathrm{~mA} / 0$ to $100(\%) /-100 \%$ to 0 to 100% - DC0 to $20 \mathrm{~mA} / 0$ to $100(\%) /-100 \%$ to 0 to 100% Reverse operation - DC20 to $4 \mathrm{~mA} / 0$ to $100(\%) /-100 \%$ to 0 to 100% - DC20 to $0 \mathrm{~mA} / 0$ to $100(\%) /-100 \%$ to 0 to 100% (2) The terminal can be assigned to PID command, feedback signal of PID control, auxiliary frequency setup, ratio setup, torque limit setup, and analog input monitor aside from the frequency setup by analog input. (3) Hardware specification * Input impedance: 250 (Ω) * Up to DC 30 mA can be input. However, input exceeding DC 20 mA will be recognized as DC 20 mA .

Table 2.2-25 Functional Description of Control Circuit Terminals (continued)

Figure 2.2-11 Connection Diagram for Shielded Lines
Figure 2.2-12 Example of Noise Countermeasures

Table 2.2-25 Functional Description of Control Circuit Terminals (continued)

Table 2.2-25 Functional Description of Control Circuit Terminals (continued)

Figure 2.2-14 Circuit Configuration Example Using Relay Contact

Figure 2.2-15 shows an example of the circuit configuration using programmable controller. Circuit (a) in Figure 2.2-15 shows the circuit configuration when the switch (SW1) is on the sink side and circuit (b) shows the circuit configuration when the switch is on the source side.
In circuit (a), terminals [FWD], [REV], [X1] to [X5] can be turned ON/OFF by shorting/opening the open collector transistor output of the programmable controller using the external power supply. Follow the instructions below when using this type of circuit.

- Connect the + side of the external power supply which is insulated from the programmable controller power supply to terminal [PLC].
- Do not connect the inverter's [CM] terminal and the common terminal of the programmable controller.

(a) Switch on the sink side

(b) Switch on the source side

Figure 2.2-15 Circuit Configuration Example Using Programmable Controller
[al Refer to "2.2.7 Operating slide switches" for more information on the switches.

Table 2.2-25 Functional Description of Control Circuit Terminals (continued)

(\%	Terminal symbol	Terminal name	Functional description
	[FM]	Analog monitor FMV function FMI function	This terminal outputs analog direct current voltage DC0 to 10 V or analog direct current DC4 to $20 \mathrm{~mA} / \mathrm{DC} 0$ to 20 mA monitor signal. The output form (FMV/FMI) can be switched using SW5 on the printed circuit board and function code F29. Refer to "Table 2.2-26 Functional Description of Slide switches". The signal content can be chosen in the function code F31 data setting among the following items. - Output frequency 1 (before slip compensation) - Output frequency 2 (after slip compensation) - Output current - Output voltage - Output torque - Load factor - Input power - PID feedback value - Actual speed/estimated speed - DC link bus voltage - Universal AO - Motor output - Calibration (+) - PID command (SV) - PID output (MV) - Position error in master-follower operation - Inverter heat sink temperature - PG feedback value - Customizable logic ouput signal 1 to 10 * Allowable impedance for connection: $\operatorname{Min} 5 \mathrm{k} \Omega$ (at DC to 10 V output) (up to 2 analog volt meters (DC0 to 10 V , input impedance $10 \mathrm{k} \Omega$) can be connected.) * Allowable impedance for connection: Max 500Ω (at DC4 to $20 \mathrm{~mA} / \mathrm{DC0}$ to 20 mA) * Gain adjustable range: 0 to 300%
		Pulse monitor FMP function	The terminal outputs pulse signal. Signal content can be chosen same as for the FMV function by function code F31 setting. The output form (FMP) can be switched using SW5 on the printed circuit board and function code F29. Refer to "Table 2.2-26 Functional Description of Slide switches". * Allowable impedance for connection: Min. $5 \mathrm{k} \Omega$ (at DC to 10 V output) (up to 2 analog volt meters (DC0 to 10 V , input impedance $10 \mathrm{k} \Omega$) can be connected.) * Pulse duty: Approximately 50%, pulse rate: 25 to $32000 \mathrm{p} / \mathrm{s}$ (at full scale)
			- Pulse output waveform ${ }^{\text {- }}$ - FMP output circuit
	[FM2]	Analog monitor FMV2 function FMI2 function	This terminal outputs analog direct current voltage DC0 to 10 V or analog direct current DC4 to 20 mA (DC0 to 20 mA) monitor signal. The output form (FMV2/FMI2) can be switched using SW7 on the printed circuit board and function code F32. Refer to "Table 2.2-26 Functional Description of Slide switches". The signal content can be chosen in the function code F35 data setting among the same items with [FM] (F31). * Allowable impedance for connection: Min $5 \mathrm{k} \Omega$ (at DC to 10 V output) (up to 2 analog volt meters (DC0 to 10 V , input impedance $10 \mathrm{k} \Omega$) can be connected.) * Allowable impedance for connection: Max 500Ω (at DC4 to $20 \mathrm{~mA} / \mathrm{DCO}$ to 20 mA) * Gain adjustable range: 0 to 300%
	[11]	Analog output common terminal	This terminal is the common terminal for analog input and analog/pulse output signals. The terminal is insulated from terminals [CM] and [CMY]. Do not use [CM] and [CMY] as common terminals for [FM], [FM2].

Table 2.2-25 Functional Description of Control Circuit Terminals (continued)

Figure 2.2-17 Example of Connection Circuit Configuration with Programmable Controller
(1) When the inverter stops with an alarm, output is generated on the relay contact (1C). Contact rating: AC250 V 0.3 A $\cos \phi=0.3$, DC48 V 0.5 A
(2) Terminals can be switched to "Terminals [30A to 30C] shorted (excitation: active ON) at ON signal output" or "Terminals [30A to 30C] open (non-excitation: active OFF) at ON signal output"

Table 2.2-25 Functional Description of Control Circuit Terminals (continued)

	Terminal symbol	Terminal name	Functional description
	RJ-45 connector for keypad connection	RJ-45 connector for keypad connection RS-485 communication port 1	(1) Used to connect the keypad. The power to the keypad will be supplied from the inverter through this connector. (2) Also can be used to connect a computer, programmable controller, etc by RS-485 communication, after removing the keypad. (On terminating resistor, refer to "2.2.7 Operating slide switches"). Figure 2.2-18 RJ-45 Connector Pin-layout - Pins 1, 2, 7, and 8 are assigned as power supply source for the keypad. When connecting this RJ-45 connector to other devices, do not use these pins.

2.2.7 Operating slide switches

\triangle WARNING \triangle

Operation of the slide switches should be conducted after more than 5 minutes has elapsed since power is shut off for types VF1A-G72A0S4 or below and after more than 10 minutes has elapsed for types VF1AG85A0S4 or above. Confirm that the LED monitor and the charge lamp are turned off, and that the direct current intermediate circuit voltage between the main circuit terminals $\mathrm{P}(+)-\mathrm{N}(-)$ is below the safe voltage (below DC+25 V) with a tester before operating the switches.

Risk of electric shock exists.

The I/O terminal specification can be changed, such as switching the analog output form, by operating the slide switches on the printed circuit board (Figure 2.2-19 The Slide Switch Locations on the Control Printed Circuit Board).
To operate the slide switches, remove the front cover and make the control printed circuit board visible. (For types VF1A-G85A0S4 or above, also open the keypad case).

Refer to "2.2.2 Removal and attachment of the front cover/ terminal cover and wiring guide" to remove the front cover and to open/close the keypad case.

The switch locations on the control printed circuit board are shown in Figure 2.2-19 below.

Figure 2.2-19 The Slide Switch Locations on the Control Printed Circuit Board

Use pointed devices (such as tweezers) to operate the switches. Avoid touching other electronic parts when moving the switches. The switch will be at open state when the slider is in the middle, so make sure to push the slider to the ends.

Functional description of the slide switches is explained in Table 2.2-26 Functional Description of Slide switches.
Table 2.2-26 Functional Description of Slide switches

Switch symbol	Functional description				
SW1	<Switch to change sink/source setting of digital input terminals> - This switch determines the type of input (sink or source) to use for digital input terminals [X1] to [X5], FWD, and REV.				
SW2	<Switch to change the RS-485 communication port 1 terminating resistor (RS-485 communication port (on the control PCB))> - Move the switch to the ON side when RS-485 communication is used and the inverter is located at either end of the communication network.				
SW3 SW4	<Switch to change terminal [C1] input setting to current/voltage/PTC thermistor> This switch changes the input type for terminal [C1].				
	Input type	SW3	SW4	E59	H26
	Current input (factory default)	C1 side	Al side	0	0
	Voltage input	V2 side	Al side	1	0
	PTC thermistor input	C1 side	PTC side	0	1
SW5	<Switch to change terminal [FM] output setting to current/voltage/pulse> This switch changes the output type for terminal [FM]. When operating this switch, also change function code F29.				
	Output type	SW5		F29	
	Current output	FMI side		1 or 2	
	Voltage output (factory default)	FMV side		0	
	Pulse output	FMP side		3	
SW6	<Switch to change the RS-485 communication port 2 terminating resistor (RS-485 communication port (on the terminal board))> - Used for the RS-485 communication. Move the switch to the ON position when the inverter is located at either end of the communication network.				
SW7	<Switch to change terminal [FM2] output setting to voltage/current> This switch changes the output type for terminal [FM2]. When operating this switch, also change function code F32.				
	Output type	SW7		F32	
	Voltage output	FMV2 side		0	
	Current output	FMI2 side		1 or 2	
SW8	<Switch to change terminal [FM2] output setting to general-purpose/SRCF > This switch changes the output for terminal [Y2].				
		SW8			
	General-purpose output	Y2 side			
	SRCF output	SRCF side			

[^1]
2.3 Attachment and Connection of Keypad

2.3.1 Parts required for connection

The following parts are necessary when attaching the keypad to locations other than the inverter main body.

Part name	Type	Remarks
Keypad extension cable	(Note 1)	
Keypad fixing screws	$\mathrm{M} 3 \times \square$ (note 2)	2 screws required (prepared by user)

(Note 1) When using commercially available LAN cable, use 10BASE-T/100BASE-TX straight cables (below 20 meters) which meet the ANSI/TIA/EIA-568A category 5 standards of U.S.A.
Recommended LAN cable
Manufacturer: Sanwa Supply, Inc.
Type: KB-10T5-01K (for 1 meter)
KB-STP-01K (for 1 meter) (shielded cable when conforming to EMC directive)
(Note 2) When attaching to the cabinet, use a fixing screw of appropriate length to the cabinet thickness.

2.3.2 Attachment procedure

The keypad can be attached in the following forms.

- Attach to the inverter main body (refer to Figure 2.3-1 (a), (b), (c))
- Attach to the cabinet (refer to Figure 2.3-2)

■ Operate the panel remotely, on the hand (refer to Figure 2.3-3)

Figure 2.3-1 Attaching the Keypad to the Inverter Main Body

Figure 2.3-2 Attaching the Keypad on the Cabinet

Figure 2.3-3 Operating the Keypad Remotely, on the Hand

- Attachment to the cabinet

(1) Squeeze the hooks at the arrows and pull as shown in Figure 2.3-4.

Figure 2.3-4 Removal of the Keypad
(2) Attach the keypad rear cover to the keypad using the included keypad rear cover fixing screw.

Figure 2.3-5 Attachment of the Keypad
(3) Cut the cabinet to attach the keypad, as shown in Figure 2.3-6.
(Units: mm [inch])

Attach keypad rear cover for remote operation and cabinet installation

Figure 2.3-6 Fixing Screw Positions and the Dimensions of the Cabinet to Cut
(4) Fix the keypad to the cabinet using 2 keypad rear cover fixing screws. (Refer to Figure 2.3-7) (tightening torque: $0.7 \mathrm{~N} \cdot \mathrm{~m}(6.2 \mathrm{lb}-\mathrm{in})$)

Figure 2.3-7 Attachment of the Keypad
(5) Connect the Keypad extension cable to the keypad RJ-45 connector and the inverter main body RJ-45 connector (modular jack). (Refer to Figure 2.3-8.)

Figure 2.3-8 Connection of the Keypad Extension Cable (LAN Cable) between the Keypad and the Inverter Main Body

\triangle CAUTION

- Do not connect the inverter to PC LAN ports, Ethernet hubs, or telephone lines. The inverter and the connected instrument may be damaged.

Risk of fire and risk of accidents exist.

Operating remotely, on the hand

Connect following the procedure (5) in "Attachment to the cabinet".

2.4 RJ-45 Cover

The RJ-45 cover (dummy) is located below the keypad, as shown in Figure 2.4-1 and Figure 2.4-2. There is not the RJ-45 connector for COM port 2 in Doesa VF1A series.

Types VF1A-G44A0S4 or below

Figure 2.4-1 RJ-45 cover (dummy) for type VF1A-G44A0S4 or below
Types VF1A-G59A0S4 or above

Figure 2.4-2 RJ-45 cover (dummy) for type VF1A-G59A0S4 or above

Chapter 3 OPERATION USING THE KEYPAD

Refer to the Doesa VF1A series User's Manual, Chapter 3 for details of the keypad.

3.1 Names and Functions of Keypad Components

The keypad allows you to run and stop the motor, display various data, configure function code data, and monitor I/O signal states, maintenance information and alarm information.

Table 3.1-1 Overview of Keypad Functions

Item	LED Monitor, Keys, and LED Indicators	Functions
LED Monitor		Four-digit, 7-segment LED monitor which displays the followings according to the operation modes.
Operation Keys	PRG RESET	Program/Reset key which switches the operation modes of the inverter. \square In Running mode: Pressing this key switches the inverter to Programming mode. - In Programming mode: Pressing this key switches the inverter to Running mode. - In Alarm mode: Pressing this key after removing the alarm factor resets the alarm and switches back to Running mode.
	FUUN	Function/Data key which switches the operations you want to do in each mode as follows: - In Running mode: Pressing this key switches the information to be displayed concerning the status of the inverter (output frequency (Hz), output current (A), output voltage (V), etc.). When a light alarm is displayed, holding down this key resets the light alarm and switches back to Running mode. ■ In Programming mode: Pressing this key displays the function code or establishes the data entered with \square and \square keys. ■ In Alarm mode: Pressing this key displays the details of the problem indicated by the alarm code that has come up on the LED monitor.
	RUN)	RUN key. Press this key to run the motor.
	STOP	STOP key. Press this key to stop the motor.
	and	UP and DOWN keys. Press these keys to select the setting items and change the function code data displayed on the LED monitor.
		Shift key. Press this key to shift the cursor to the right for entry of a numerical value.

Table 3．1－1 Overview of Keypad Functions（continued）

Item	LED Monitor，Keys， and LED Indicators	Functions
LED Indicators	RUN LED	Lights when running with a run command entered by the run key，by terminal command FWD or REV，or through the communications link．
	PANEL LED	Lights when the inverter is ready to run with a run command entered by the RuN（F02＝ 0,2 ，or 3）．In Programming and Alarm modes，however，pressing the Run key cannot run the inverter even if this indicator lights．
	Unit LEDs （3 LEDs）	These three LED indicators identify the unit of numeral displayed on the LED monitor in Running mode by combination of lit and unlit states of them． Unit：Hz，A，kW，r／min and m／min Refer to the Doesa VF1A series User＇s Manual，＂3．3．1 Monitoring the running status＂for details．
		While the inverter is in Programming mode，$\square \mathrm{Hz}$ the LEDs of Hz and kW light．$\square \mathrm{A}$ ■kW
	x10 LED	Lights when the data to display exceeds 9999．When this LED lights，the＂displayed value x 10 ＂is the actual value． Example：If data is＂ 12,345 ，＂the LED monitor displays バニデー！and the x10 LED lights， meaning that＂ $1,234 \times 10=12,340$ ．＂

LED monitor

In Running mode，the LED monitor displays running status information（output frequency，current or voltage）；in Programming mode，it displays menus，function codes and their data；and in Alarm mode，it displays an alarm code which identifies the alarm factor that has activated the protective function．
If one of LED4 through LED1 is blinking，it means that the cursor is at this digit，allowing you to change it．
If the decimal point of LED1 is blinking，it means that the currently displayed data is a value of the PID command， not the frequency data usually displayed．

LED4 LED3 LED2 LED1

Figure 3．1－1 7－Segment LED Monitor

Table 3．1－2 Alphanumeric Characters on the LED Monitor

Character	7－segment	Character	7－segment	Character	7－segment	Character	7－segment
0	4	9	9	i	1	r	r
1	＇	A	9	J	ι^{\prime}	S	5
2	Σ	b	b	K	L^{\prime}	T	！
3	3	c	L	L	L	u	4
4	4	d	\square^{\prime}	M	17	V	$L^{\prime \prime}$
5	5	E	E	n	7	W	$コ^{\prime}$
6	5	F	\digamma	\bigcirc	0	X	1
7	7	G	$\stackrel{\square}{C}$	P	19	y	3
8	8	H	H	q	7	z	2
Special characters and symbols（numbers with decimal point，minus and underscore）							
0．－ 9 ．	C．-7	－	－	－	－		

3.2 Overview of Operation Modes

The VF1A features the following three operation modes.
Table 3.2-1 Operation Modes

Operation mode	Description
Running mode	When powered ON, the inverter automatically enters this mode. This mode allows you to specify the reference frequency, PID command value and etc., and run/stop the motor with the (־un) / (10) keys. It is also possible to monitor the running status in real time. If a light alarm occurs, the -1 fill appears on the LED monitor.
Programming mode	This mode allows you to configure function code data and check a variety of information relating to the inverter status and maintenance.
Alarm mode	If an alarm condition arises, the inverter automatically enters Alarm mode in which you can view the corresponding alarm code* and its related information on the LED monitor. * Alarm code: Indicates the cause of the alarm condition. For details, first see "Table 6.1-1 Abnormal States Detectable ("Heavy Alarm" and "Light Alarm" Objects)" in Chapter 6 " 6.1 Protective Function", and then read the troubleshooting of each alarm.

Figure 3.2-1 shows the status transition of the inverter between these three operation modes.

Figure 3.2-1 Status Transition between Operation Modes

Simultaneous keying

Simultaneous keying means pressing two keys at the same time. The simultaneous keying operation is expressed by a " + " letter between the keys throughout this manual.

Figure 3.2-2 illustrates the transition of the LED monitor screen during Running mode, the transition between menu items in Programming mode, and the transition between alarm codes at different occurrences in Alarm mode.

Figure 3.2-2 Transition between Basic Screens in Individual Operation Mode
(*1) The speed monitor allows you to select the desired one from the speed monitor items by using function code E48.
(*2) Applicable only when PID control is active ($\mathrm{J} 01=1,2$ or 3).
(*3) The analog input monitor can appear only when the analog input monitor function is assigned to one of the analog input terminals by one of function codes E61 to E63 (= 20).
(*4), 7 appears under the V/f control.
(*5) The Timer screen appears only when the timer operation is enabled with function code C21 (C21 = 1).
(*6) Applicable only when the full-menu mode is selected (E52 = 2). When a remote keypad with USB is equipped, 1 リノ,

Chapter 4 TEST RUN PROCEDURE

4.1 Test Run Procedure Flowchart

Make a test run of the motor using the flowchart given below.
This chapter describes the test run procedure with motor 1 dedicated function codes that are marked with an asterisk ${ }^{*}$). For motor 2 , replace those function codes with asterisk with motor 2 dedicated ones.

DD For the function codes dedicated to motor 2, see Chapter 5 "FUNCTION CODES."

Figure 4.1-1 Test Run Procedure

4.2 Checking Prior to Powering On

Check the following before powering on the inverter.
(1) Check that the wiring is correct.

Especially check the wiring to the inverter input terminals (L1/R, L2/S, L3/T or L1/L, L2/N) and output terminals (U, V, and W). Also check that the grounding wires are connected to the grounding terminals (気G) correctly. See Figure 4.2-1.

\triangle WARNING

- Never connect power supply wires to the inverter output terminals U, V, and W . Doing so and turning the power ON breaks the inverter.
- Be sure to connect the grounding wires of the inverter and the motor to the ground electrodes.

Otherwise, an electric shock could occur.
(2) Check the control circuit terminals and main circuit terminals for short circuits or ground faults.
(3) Check for loose terminals, connectors and screws.
(4) Check that the motor is separated from mechanical equipment.
(5) Make sure that all switches of devices connected to the inverter are turned OFF. Powering on the inverter with any of those switches being ON may cause an unexpected motor operation.
(6) Check that safety measures are taken against runaway of the equipment, e.g., a defense to prevent people from access to the equipment.
(7) Check that a power factor correction DC reactor (DCR) is connected to the DC reactor terminals P 1 and $\mathrm{P}(+)$. (ND-mode in case of inverters VF1A-G139AS4 must be used with a DCR. Be sure to connect the DCR to the inverter.)

Figure 4.2-1 Connection of Main Circuit Terminals

4.3 Powering ON and Checking

』WARNING

- Be sure to mount the front cover before turning the power ON. Do not remove the cover when the inverter power is ON.
- Do not operate switches with wet hands.

Otherwise, an electric shock could occur.

Turn the power ON and check the following points. The following is a case when no function code data is changed from the factory defaults.
(1) Check that the LED monitor displays See Figure 4.3-1.
(2) Check that the inverter cooling fans rotate.

Figure 4.3-1 Display of the LED Monitor after Power-on

4.4 Switching the Applicable Motor Rating (ND, HD, HND and HHD Modes)

Changing the data of function code F80 switches the applicable motor rank to match load conditions. In HD, HND or HHD mode, the inverter drives a motor whose capacity is one or two ranks lower than the inverter's one.

F80 data	Drive mode	Application	Applicable motor	Overload capability	Maximum frequency	Operating temperature	Application samples
4	ND mode	General load	Motor whose capacity is the same as the inverter's one.	120% for 1 min.	120 Hz	$40^{\circ} \mathrm{C}$ $\left(104^{\circ} \mathrm{F}\right)$	Fan, pump, blower, compressor, etc.
3	HD mode	Heavy duty load	Motor whose capacity is one rank lower than the inverter's one.	150% for 1 min.	500 Hz	$40^{\circ} \mathrm{C}$ $\left(104^{\circ} \mathrm{F}\right)$	Wire drawing machine, winding machine, twisting machine, spinning frame, etc.
1	HND mode	General load	Motor whose capacity is one rank lower than the inverter's one.	120% for 1 min.	500 Hz	$50^{\circ} \mathrm{C}$ $\left(122^{\circ} \mathrm{F}\right)$	Fan, pump, blower, compressor, etc.
0	HHD mode	Heavy duty load	Motor whose capacity is two ranks lower than the inverter's one.	150% for 1 min. 200% for 0.5 s.	500 Hz	$50^{\circ} \mathrm{C}$ $\left(122^{\circ} \mathrm{F}\right)$	Wire drawing machine, winding machine, twisting machine, spinning frame, hoist, machine tool, etc.

The HD-/HND-/HHD-mode inverter brings out the continuous rated current level which enables the inverter to drive a motor with one or two ranks lower capacity, but its overload capability (\%) against the continuous current level or the operating temperature increases. For details, see the Doesa VF1A series User's manual, Chapter 12 "SPECIFICATIONS."

Three-phase 400V series inverters have an ND/HD/HND/HHD four type rating. However, the VF1A-G06A9S4 and VF1A-G12A0S4 have an ND/HD/HHD three type rating.

The inverter is subject to restrictions on the function code data setting range and internal processing as listed below.

Function codes	Name	ND mode	HD mode	HND mode	HHD mode	Remarks
F21*	DC braking (Braking level)	Setting range: 0 to 60\%	Setting range: 0 to 80\%		Setting range: 0 to 100\%	In the ND/HD/HND mode, a value out of the range, if specified, automatically changes to the maximum value allowable in the ND/HD/HND mode.
F26	Motor sound (Carrier frequency)	ND mode - 0.75 to10 kHz (VF1A-G02A1S4 to VF1A-G59A0S4) -0.75 to 6 kHz (VF1A-G72A0S4 or above) HD/HND mode - 0.75 to16 kHz (VF1A-G02A1S4 to VF1A-G59A0S4) - 0.75 to 10 kHz (VF1A-G72A0S4 or above) HHD mode - 0.75 to 16 kHz (VF1A-G02A1S4 or above)				
F44	Current limiter (Level)	Initial value: 130\%	Initial value: 160\%	Initial value: 130%	Initial value: VF1A-G59A0S4 or above : 160\% VF1A-G44A0S4 or below : 180\%	Switching the drive mode with function code F80 automatically initializes the F44 data to the value specified at left.
F03*	Maximum frequency	Setting range: 25 to 500 Hz Upper limit: $120 \text { Hz }$	Setting ran 25 to 500 Upper limit: 500 Hz			In the ND mode, if the maximum frequency exceeds 120 Hz , the actual output frequency is internally limited to 120 Hz .
-	Current indication and output	Based on the rated current level for ND mode	Based on the rated current level for HD mode	Based on the rated current level for HND mode	Based on the rated current level for HHD mode	-

Switching between the drive modes does not automatically change the motor rated capacity ($\mathrm{P} 02^{*}$) to the one suitable for the rank-changed motor, so configure the $\mathrm{P} 02^{*}$ data to match the applied motor rating as required.

Chapter 5 FUNCTION CODES

5.1 Function Codes Overview

Function codes are used for selecting various functions of VF1A. Function codes comprise 3 digits or 4 digits of alphanumeric character. The first digit categorizes the group of function code alphabetically and the subsequent 2 or 3 digits identify each code within the group by number. Function code comprises 11 groups: Basic function (F code), Terminal function (E code), Control code (C code), Motor 1 parameter (P code), High-level function (H code) (H1 code), Motor 2 parameter (A code), Application function 1 (J code) (J1 code), Application function 2 (d code), Customizable logic (U code) (U1 code), Link function (y code), Keypad functions (K code), and Option function (o code). The function of each function code is determined according to the data to be set. The following descriptions $\overline{\text { are for supplementary explanation of function code table. Refer to instruction manual of each option to find the }}$ details of the option function (o code).

5.2 Function Codes Table

5.2.1 Supplementary note

- Change, reflect, and save function code data during operation

Function codes are categorized into those which data change is enabled during operation of the inverter and those which such change is disabled. The meaning of the code in the "Change during operation" column of the function code table is described in the following table.

Code	Change during operation	Reflect and save data
Y^{*}	Allowed	At the point when data is changed by $\boldsymbol{\Delta} / / \mathbf{\nabla}$ key, the changed data is immediately reflected on the operation of inverter. However, at this stage, the changed value is not saved to the inverter. In order to save it to the inverter, press $\frac{\text { func }}{\text { Dand }}$ key. Without saving by $\frac{\text { func }}{\text { Data }}$ key and leaving the state of when the change was made by the ${\underset{\text { RREG }}{\text { REST }}}_{\text {Rey }}$ key the data before the change is reflected on the operation of inverter.
Y	Allowed	Even if data is changed by the $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ key, the changed data will not be reflected on the operation of the inverter as is; by pressing the $\frac{\text { func }}{\text { Dand }}$ key, the changed value is reflected on the operation of the inverter and is also saved to the inverter.
N	Not allowed	-

- Copying data

Function code data can be copied collectively by using the optional keypad "VF1A-PH1" (program mode menu number 7 "Data copy"). By using this function, it is possible to read out all function code data and write the same data to a different inverter.
However, if the specification of inverter at the copy source and copy destination is not identical, some function codes may not be copied due to security reason. According to necessity, configure the settings individually for the function codes that are not copied. The behaviour of the function codes regarding data copy is indicated in the "data copy" column in the function code table in the next page and following.
Y : to be copied.
Y1: When inverter capacity is different, copying will not be performed.
Y2: When voltage group is different, copying will not be performed.
N : not to be copied.

Negative logic setting of data

Digital input terminal and transistor/contact output terminal can become a signal for which negative logic is specified by function code data setting. Negative logic is a function to reverse ON and OFF state of input or output, and switch Active ON (function enabled with ON: positive logic) and Active OFF (function enabled with OFF: negative logic). However, negative logic may not be enabled depending on the function of the signal.
Negative logic signal can be switched by setting the data with 1000 added to the function code data of the function to be set. For example, the following example shows when coast to a stop command " BX " is selected by function code E01.

Function code data	Action
7	" BX " is ON and coast to a stop (Active ON)
1007	" BX " is OFF and coast to a stop (Active OFF)

Drive control

The VF1A runs under any of the following drive controls. Some function codes apply exclusively to the specific drive control, which is indicated by letters Y (Applicable) and N (Not applicable) in the "Drive control" column in the function code tables given on the following pages.

Abbreviation in "Drive control" column in function code tables	Control target (H18)	Drive control (F42)
V/f	Speed (Frequency for V/f and PG V/f)	0,2: V/f control 1: Dynamic torque vector control
PG V/f		3: V/f control with speed sensor 4: V/f control with speed sensor and auto torque boost
w/ PG		6: Vector control with speed sensor
Torque control	Torque	6: Vector control with speed sensor
PM	Speed	15: Vector control without speed sensor nor pole position sensor

For details about the drive control, refer to the description of F42 "Drive control selection 1."
Note
The VF1A is a general-purpose inverter whose operation is customized by frequency-basis function codes,
Note like conventional inverters. Under the speed-basis drive control, however, the control target is a motor speed, not a frequency, so convert the frequency to the motor speed according to the following expression.

Motor speed $(\mathrm{r} / \mathrm{min})=120 \times$ Frequency $(\mathrm{Hz}) \div$ Number of poles

5.2.2 Function codes table

The table of function codes to be used in VF1A is shown below.
The related page shows the page of the Doesa VF1A series User's manual.
F codes: Fundamental Functions (Basic function)

Code	Name	Data setting range		읒$\stackrel{0}{3}$00$\stackrel{\pi}{0}$0	Factory Default	Drive control					
						$\stackrel{+}{>}$	-	O		,	
F00	Data protection	0: No data protection, no digital setting protection 1: With data protection, no digital setting protection 2: No data protection, with digital setting protection 3: With data protection, with digital setting protection	Y	Y	0	Y	Y	Y	Y	Y	5-43
F01	Frequency setting 1	0: Keypad key operation (■/⿴key) 1: Analog voltage input (Terminal [12]) (from 0 to ± 10 VDC) 2: Analog current input (Terminal [C1] (C1 function)) (4 to $20 \mathrm{~mA} \mathrm{DC}, 0$ to 20 mA DC) 3: Analog voltage input (Terminal [12]) + Analog current input (Terminal [C1] (C1 function)) 5: Analog voltage input (Terminal [C1] (V2 function)) (0 to 10 VDC) 7: UP/DOWN control 8: Keypad key operation (Δ / $\boldsymbol{\nabla}$ key) (With balanceless bumpless) 10: Pattern operation 11: Digital input/output interface card (option) 12: Pulse train input	N	Y	0	Y	Y	Y	N	Y	5-44
F02	Operation method	0: Keypad operation (rotation direction input: terminal block) 1: External signal (digital input) 2: Keypad operation (forward rotation) 3: Keypad operation (Reverse rotation)	N	Y	2	Y	Y	Y	Y	Y	5-55
F03	Maximum output frequency 1	25.0 to 500.0 Hz	N	Y	60.0	Y	Y	Y	Y	Y	5-56
F04	Base frequency 1	25.0 to 500.0 Hz	N	Y	60.0	Y	Y	Y	Y	Y	5-57
F05	Rated voltage at base frequency 1	0: AVR disable (output voltage proportional to power voltage) 160 to 500V : AVR operation (400V class)	N	Y2	460	Y	Y	Y	Y	Y	
F06	Maximum output voltage 1	160 to 500V : AVR operation (400V class)	N	Y2		Y	Y	N	Y	Y	
F07	Acceleration time1	0.00 to 6000 s	Y	Y	6.00	Y	Y	Y	N	Y	5-59
F08	Deceleration time1	0.00 is for acceleration and deceleration time cancel (when performing soft-start and stop externally)	Y	Y	$\begin{gathered} \text { or } \\ 20.0 \\ * 10 \end{gathered}$	Y	Y	Y	N	Y	
F09	Torque boost 1	0.0 to 20.0\% (\% value against base frequency voltage 1)	Y	Y	*2	Y	Y	N	N	N	5-61
F10	Electronic thermal overload protection for motor 1 (Select motor characteristics) (Overload detection level)	```1: Enable (For a general-purpose motor with self-cooling fan) 2: Enable (For an inverter-driven motor (FV) with separately powered cooling fan) 0.00 (disable), current value of 1 to 135% of inverter rated current (Inverter rated current dependent on F80) 0.5 to 75.0 min```	Y	Y	1	Y	Y	Y	Y	Y	5-61
F11			Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} \end{aligned}$	*3	Y	Y	Y	Y	Y	
F12	(Thermal time constant)		Y	Y	*4	Y	Y	Y	Y	Y	

\square indicates quick setup target function code.
*2: Factory defaults are depended on motor capacity. Refer to "5.2.3 Factory default value per applicable electric motor capacitance".
*3: The motor rated current is automatically set. Refer to the Doesa VF1A series User's Manual, "5.2.4 Motor constant".
*4: 5.0min for VF1A-G44A0S4 or below; 10.0min for VF1A-G59A0S4 or above.
*10: 6.00s for VF1A-G44A0S4 or below or below; 20.0s for VF1A-G59A0S4 or above.

Code	Name	Data setting range			Factory Default	Drive control					
						$\stackrel{4}{>}$	$\left.\begin{array}{\|c} \pm \\ > \\ 0 \\ 0 \end{array} \right\rvert\,$	-		\sum_{0}	
F14	Restart mode after momentary power failure (Mode selection)	0: Trip immediately 1: Trip after a recovery from power failure 2: Trip after momentary deceleration is stopped 3: Continue to run (for heavy inertia load or general load) 4: Restart from frequency at power failure (for general load) 5: Restart from starting frequency	Y	Y	0	Y	Y	Y	N	Y	5-64
F15	Frequency limiter (Upper limit) (Lower limit)	0.0 to 500.0 Hz	Y	Y	70.0	Y	Y	Y	N	Y	5-71
F16		0.0 to 500.0 Hz	Y	Y	0.0	Y	Y	Y	N	Y	
F18	Bias (for frequency setting 1)	-100.00 to 100.00\%	Y^{*}	Y	0.00	Y	Y	Y	N	Y	5-71
F20	DC braking 1 (Braking starting frequency) (Braking level) (Braking time)	0.0 to 60.0 Hz	Y	Y	0.0	Y	Y	Y	N	Y	5-72
F21		0 to 100\% (HHD mode), 0 to 80% (HD/HND mode) 0 to 60\% (ND mode)	Y	Y	0	Y	Y	Y	N	Y	
F22		0.00 (Disable): 0.01 to 30.00 s	Y	Y	0.00	Y	Y	Y	N	Y	
F23	Starting frequency 1 (Holding time)	0.0 to 60.0 Hz	Y	Y	0.5	Y	Y	Y	N	Y	5-75
F24		0.00 to 10.00 s	Y	Y	0.00	Y	Y	Y	N	Y	
F25	Stop frequency	0.0 to 60.0 Hz	Y	Y	0.2	Y	Y	Y	N	Y	
F26	Motor sound (Carrier frequency) (Tone)	ND mode -0.75 to 10 kHz (VF1A-G02A1S4 to VF1A-G59A0S4) -0.75 to 6 kHz (VF1A-G72A0S4 or above) $\mathrm{HD} / \mathrm{HND}$ mode -0.75 to16 kHz (VF1A-G02A1S4 to VF1A-G59A0S4) -0.75 to10 kHz (VF1A-G72A0S4 or above) HHD mode -0.75 to16 kHz	Y	Y	2	Y	Y	Y	Y	Y	5-78
F27		0 : Level 0 (Disable) 1 to 3 : Level 1 to 3	Y	Y	0	Y	Y	N	N	N	
F29	Terminal FM (Mode selection) (Output gain) (Function selection)	0 : Voltage output (0 to +10 VDC) 1: Current output (4 to 20 mA DC) 2: Current output (0 to 20 mADC) 3: Pulse output	Y	Y	0	Y	Y	Y	Y	Y	5-79
F30		0 to 300\%	Y^{*}	Y	100	Y	Y	Y	Y	Y	
F31		0: Output frequency 1 (before slip compensation) 1: Output frequency 2 (after slip compensation) 2: Output current 3: Output voltage 4: Output torque 5: Load factor 6: Input power 7: PID feedback value 8: Actual speed/estimated speed 9: DC link bus voltage 10: Universal AO 13: Motor output 14: Calibration (+) 15: PID command (SV) 16: PID output (MV) 17: Position error in master-follower operation 18: Inverter heat sink temperature 21: PG feedback value 111 to 120 Customizable logic output signal 1 to 10	Y	Y	0	Y	Y	Y	N	Y	
F32	Terminal FM 2 (Mode selection)	0: Voltage output (0 to +10 VDC) 1: Current output (4 to 20 mA DC) 2: Current output (0 to 20 mA DC)	Y	Y	0	Y	Y	Y	Y	Y	
F33	Terminal FM (Pulse rate)	25 to $32000 \mathrm{p} / \mathrm{s}$ (number of pulse at monitor value 100\%)	Y^{*}	Y	1440	Y	Y	Y	Y	Y	
F34	Terminal FM 2 (Output gain) (Function selection)	0 to 300%	Y^{*}	Y	100	Y	Y	Y	Y	Y	
F35		Same as F31	Y	Y	2	Y	Y	Y	N	Y	

\square indicates quick setup target function code.

Code	Name	Data setting range			Factory Default	Drive control					
						$\stackrel{\square}{>}$	$\left\|\begin{array}{c} \pm \\ \hline \\ 0 \\ 0 \end{array}\right\|$	-		\sum_{0}	
F37	Load selection/ Auto torque boost/ Auto energy-saving operation 1	0: Variable torque load 1: Constant torque load 2: Auto torque boost 3: Auto energy-saving operation (variable torque load) 4: Auto energy-saving operation (constant torque load) 5: Auto energy-saving operation with auto torque boost	N	Y	1	Y	Y	Y	N	N	5-82
F38	Stop frequency (Detection mode)	0: Actual speed / estimated speed 1: Reference speed	N	Y	0	N	N	Y	N	N	5-84
F39	Stop frequency (Holding time)	0.00 to 10.00 s	Y	Y	0.00	Y	Y	Y	N	Y	
F40	Torque limiter $1 \quad$ (Driving)	0 to 300\%; 999 (Disable)	Y	Y	999	Y	Y	Y	Y	Y	5-84
F41	(Braking)	0 to 300\%; 999 (Disable)	Y	Y	999	Y	Y	Y	Y	Y	
F42	Drive control selection 1	0: V/f control without slip compensation 1: Vector control without speed sensor (dynamic torque vector) 2: V/f control with slip compensation 3: V/f control with speed sensor 4: V/f control with speed sensor and auto torque boost 6: Vector control for induction motor with speed sensor 15: Vector control for synchronous motor without speed sensor nor pole position sensor	N	Y	0	Y	Y	Y	Y	Y	5-90
F43	Current limiter (Mode selection)	0: Disable (No current limiter works.) 1: Enable at constant speed (Disable during ACC/DEC) 2: Enable during ACC/constant speed operation	Y	Y	2	Y	Y	N	N	N	5-94
F44	(Level)	20 to 200\% (Rated current of the inverter for 100\%)	Y	Y	130	Y	Y	N	N	N	
F50	Electronic thermal overload protection for braking resistor (Discharging capacity)	1 to 9000 kWs OFF (Cancel)	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	OFF	Y	Y	Y	Y	Y	5-95
F51	(Allowable average loss)	0.001 to 99.99 kW	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	0.001	Y	Y	Y	Y	Y	
F52	(Braking resistance value)	0.00: Resistance not required 0.01 to 999Ω	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	0.00	Y	Y	Y	Y	Y	
F80	Switching between ND, HD, HND and HHD drive modes	0 : HHD mode 1: HND mode 3: HD mode 4: ND mode	N	Y	4	Y	Y	Y	Y	Y	5-97

E code: Extension Terminal Functions (Terminal function)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} \& \multirow[b]{2}{*}{Name} \& \multirow[b]{2}{*}{Data setting range} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{옻
응
0
$\frac{\pi}{0}$
0} \& \multirow[b]{2}{*}{Factory Default} \& \multicolumn{5}{|c|}{Drive control} \& \multirow[b]{2}{*}{}

\hline \& \& \& \& \& \& $\stackrel{4}{>}$ \& H \& O

3 \& - \& \sum_{n} \&

\hline \& \& 71 (1071): Hold line speed control frequency in the memory "LSC-HLD" \& \& \& \& Y \& Y \& Y \& N \& N \&

\hline \& \& 72 (1072): Count the run time of commercial power-driven motor 1 "CRUN-M1" \& \& \& \& Y \& Y \& Y \& Y \& N \&

\hline \& \& | 73 (1073): Count the run time of commercial power-driven motor 2 |
| :--- |
| "CRUN-M2" | \& \& \& \& Y \& Y \& Y \& Y \& N \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& N \&

\hline \& \& 78 (1078): Select speed control parameter 1 --"MPRM1" \& \& \& \& N \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& N \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& 81 (1081): Clear all customizable logic timers ------------------------- \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& 171 (1171): PID control multistage command 1----PID-SS1" \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& * Inside the () is the negative logic signal (OFF at shortcircuit) \& \& \& \& \& \& \& \& \&

\hline E10 \& Acceleration time2 \& 0.00 to 6000 s \& Y \& Y \& 6.00 \& Y \& Y \& Y \& N \& Y \& 5-114

\hline E11 \& Deceleration time2 \& * 0.00 is for acceleration and deceleration time cancel \& Y \& Y \& or \& Y \& Y \& Y \& N \& Y \&

\hline E12 \& Acceleration time 3 \& \& Y \& Y \& ${ }^{20} 10$ \& Y \& Y \& Y \& N \& Y \&

\hline E13 \& Deceleration time 3 \& \& Y \& Y \& \& Y \& Y \& Y \& N \& Y \&

\hline E14 \& Acceleration time 4 \& \& Y \& Y \& \& Y \& Y \& Y \& N \& Y \&

\hline E15 \& Deceleration time 4 \& \& Y \& Y \& \& Y \& Y \& Y \& N \& Y \&

\hline E16 \& Torque limiter 2 (Driving) \& 0 to 300\%; 999 (Disable) \& Y \& Y \& 999 \& Y \& Y \& Y \& Y \& Y \& 5-114

\hline E17 \& (Braking) \& 0 to 300\%; 999 (Disable) \& Y \& Y \& 999 \& Y \& Y \& Y \& Y \& Y \&

\hline E20 \& Terminal [Y1] function \& \& N \& Y \& 0 \& Y \& Y \& Y \& Y \& Y \& 5-115

\hline E21 \& Terminal [Y2] function \& \& N \& Y \& 7 \& Y \& Y \& Y \& N \& Y \&

\hline E27 \& Terminal $[30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]$ function \& \& N \& Y \& 99 \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& 3 (1003): Under voltage detected (inverter stopped) "--------------- \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& 4(1004): Detected torque polarity \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& 6 (1006): Auto-restarting after momentary power failure "IPF" \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& 7 (1007): Motor overload early warning --------------------------------- \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& 18 (1018): Pattern operation stage 1-----------------------------------1" \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& 22 (1022): Inverter output limiting with delay ---------------------------1/ \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& N \& Y \& Y \& N \& N \&

\hline \& \& 30 (1030): Lifetime alarm \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& N \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline \& \& \& \& \& \& Y \& Y \& Y \& Y \& Y \&

\hline
\end{tabular}

*10: 6.00s for VF1A-G44A0S4 or below or below; 20.0s for VF1A-G59A0S4 or above.

Code	Name	Data setting range			Factory Default	Drive control					
						$\stackrel{4}{>}$		O	[\sum_{Q}	
						Y	Y	Y	Y	Y	
		42 (1042): PID alarm				Y	Y	Y	N	Y	
						Y	Y	Y	N	Y	
		44 (1044): Under sleep mode of PID control "PID-STP"				Y	Y	Y	N	Y	
						Y	Y	Y	Y	Y	
		46 (1046): Torque detected 1				Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
		48 (1048): Motor 1 selected				Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
		56 (1056): Motor overheat detected by thermistor-------------------------------------3"\|				Y	Y	Y	Y	Y	
						Y	Y	Y	N	N	
						Y	Y	Y	Y	Y	
		59 (1059): Terminal [C1] (C1 function) wire break detected "C1OFF"				Y	Y	Y	Y	Y	
						N	Y	Y	Y	Y	
						N	Y	Y	N	Y	
						Y	Y	Y	N	Y	
						N	Y	Y	N	Y	
						Y	Y	Y	Y	Y	
		79 (1079): During decelerating at momentary power failure "IPF2"				Y	Y	Y	Y	Y	
						N	Y	N	N	N	
						N	Y	N	N	N	
						N	Y	Y	N	N	
						N	Y	N	N	N	
						Y	Y	Y	Y	Y	
						Y	Y	Y	N	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
		111 (1111): Customizable logic output signal 1-------CLO1"				Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
		114 (1114): Customizable logic output signal 4 -------"CLO4"				Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
		120 (1120): Customizable logic output signal 10 "CLO10"				Y	Y	Y	Y	Y	
		* Inside the () is written the negative logic signal setting (OFF at short-circuit)									
E29	Frequency arrival delay timer (FAR2)	0.01 to 10.00 s	Y	Y	0.10	Y	Y	Y	N	Y	5-124
E30	Frequency arrival detection width (Detection width)	0.0 to 10.0 Hz	Y	Y	2.5	Y	Y	Y	N	Y	

Code	Name	Data setting range	бu!̣uй иәчм әбиечэ		Factory Default	Drive control					
						$\stackrel{4}{>}$	$\begin{aligned} & \pm \\ & S \\ & 0 \\ & 0 \end{aligned}$	-	은	\sum_{0}	
E31	Frequency detection 1 (Level) (Hysteresis width)	0.0 to 500.0 Hz	Y	Y	60.0	Y	Y	Y	N	Y	5-126
E32		0.0 to 500.0 Hz	Y	Y	1.0	Y	Y	Y	N	Y	
E34	Overload early warning/Current detection (Level) (Timer)	0.00 (Disable), 1 to 200% of inverter rated current (Inverter rated current dependent on F80)	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*3	Y	Y	Y	Y	Y	5-127
E35		0.01 to 600.00 s	Y	Y	10.00	Y	Y	Y	Y	Y	
E36	Frequency detection 2 (Level)	0.0 to 500.0 Hz	Y	Y	60.0	Y	Y	Y	Y	Y	5-128
E37	Current detection $2 /$ Low current detection (Level) (Timer)	0.00 (Disable), 1 to 200% of inverter rated current (Inverter rated current dependent on F80)	Y	$\begin{aligned} & \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*3	Y	Y	Y	Y	Y	5-128
E38		0.01 to 600.00 s	Y	Y	10.00	Y	Y	Y	Y	Y	
E39	Display coefficient for transport time	0.000 to 9.999	Y	Y	0.000	Y	Y	Y	N	Y	5-128
E42	LED display filter	0.0 to 5.0 s	Y	Y	0.5	Y	Y	Y	Y	Y	$\begin{array}{\|c} \hline 5-128 \\ \hline 5-129 \end{array}$
E43	LED monitor (Item selection)	```Speed monitor (Selectable with E48) Output current Output voltage Calculated torque Input power 10: PID process command 12: PID feedback value 13: Timer value(for timed operation) 14: PID output 15: Load factor 16: Motor output 17: Analog signal input monitor 21: Current position pulse 22: Position error pulse 23: Torque current (\%) 24: Magnetic flux command(\%) 25: Input watt-hour```	Y	Y	0	Y	Y	Y	Y	Y	
E44	(Display when stopped)	0: Specified value 1: Output value	Y	Y	0	Y	Y	Y	Y	Y	5-130
E48	LED monitor (Speed monitor item)	```Output frequency 1 (before slip compensation) Output frequency 2 (after slip compensation) Reference frequency Motor rotation speed Load rotation speed Line speed Transport time for specified length Speed (\%)```	Y	Y	0	Y	Y	Y	Y	Y	5-130
E49	Torque Command Monitor (Polarity selection)	0: Torque polarity 1: Plus for driving, Minus for braking	Y	Y	1	Y	Y	Y	Y	Y	5-130
E50	Display coefficient for speed monitor	0.01 to 200.00	Y	Y	30.00	Y	Y	Y	Y	Y	5-131
E51	Display coefficient for "Input watt-hour data"	0.000 (Cancel/Reset). 0.001 to 9999	Y	Y	0.010	Y	Y	Y	Y	Y	5-131
E52	Keypad (Menu display mode)	```0: Function code data setting mode (Menu 0, Menu1, and Menu 7) Function code data check mode (Menu 2 and Menu 7) Full-menu mode```	Y	Y	0	Y	Y	Y	Y	Y	5-132
E54	Frequency detection 3 (Level)	0.0 to 500.0 Hz	Y	Y	60.0	Y	Y	Y	Y	Y	5-132
E55	Current detection 3 (Level)	0.00 (Disable), 1 to 200% of inverter rated current (Inverter rated current dependent on F80)	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*3	Y	Y	Y	Y	Y	5-132
E56		0.01 to 600.00 s	Y	Y	10.00	Y	Y	Y	Y	Y	

\square indicates quick setup target function code
*3: The motor rated current is automatically set. Refer to Refer to the Doesa VF1A series User's Manual, "5.2.4 Motor constant" (function code P03).

Code	Name	Data setting range	Би!̣uии иәчм әбиечว			Drive control					
					Factory Default	$\stackrel{4}{>}$	-	O		\sum_{Q}	
		33 (1033): Reset PID integral and differential terms "PID-RST"				Y	Y	Y	N	Y	
						Y	Y	Y	N	Y	
		35 (1035): Select local (Keypad) command "LOC"				Y	Y	Y	Y	Y	
						Y	Y	N	N	N	
		43 (1043): Start / Reset				Y	Y	N	N	N	
		44 (1044): Switch to the serial pulse receiving mode "SPRM"				Y	Y	N	N	N	
						Y	Y	N	N	N	
						Y	Y	Y	N	Y	
						N	N	Y	N	N	
						Y	Y	Y	N	Y	
		59 (1059): Enable battery-driven operation "BATRY/UPS"				Y	Y	Y	N	N	
						N	N	Y	N	N	
						N	N	Y	N	N	
						N	N	Y	N	N	
		65 (1065): Check brake				Y	Y	Y	N	N	
		70 (1070): Cancel line speed control ------------3/LSC"				Y	Y	Y	N	N	
		71 (1071): Hold line speed control frequency in the memory "LSC-HLD"				Y	Y	Y	N	N	
		72 (1072): Count the run time of commercial power-driven motor 1 "CRUN-M1"				Y	Y	Y	Y	N	
		73 (1073): Count the run time of commercial power-driven motor 2 "CRUN-M2"				Y	Y	Y	Y	N	
						Y	Y	Y	N	N	
		78 (1078): Select speed control parameter 1----"MPRM1"				N	Y	Y	Y	Y	
						N	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	N	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
						Y	Y	Y	Y	Y	
		171 (1171): PID control multistage command 1------------------------>1"				Y	Y	Y	N	Y	
		172 (1172): PID control multistage command 2-"PID-SS2"				Y	Y	Y	N	Y	
		* Inside the () is the negative logic signal. (OFF at shortcircuit)									

C code: Control Functions of Frequency (Control function)

Code	Name		Data setting range			Factory Default	Drive control						
			$\stackrel{+}{>}$				$\begin{aligned} & 7 \\ & \hline \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$		\sum_{0}			
C01	Jump frequency	1		0.0 to 500.0 Hz	Y	Y	0.0	Y	Y	Y	N	Y	5-137
C02		$\begin{gathered} 2 \\ 3 \\ \text { (Skip width) } \end{gathered}$	Y		Y	0.0	Y	Y	Y	N	Y		
C03			Y		Y	0.0	Y	Y	Y	N	Y		
C04		(Skip width)	0.0 to 30.0 Hz	Y	Y	3.0	Y	Y	Y	N	Y		
C05	Multistep frequency	,	0.00 to 500.00 Hz	Y	Y	0.00	Y	Y	Y	N	Y	5-138	
C06		2		Y	Y	0.00	Y	Y	Y	N	Y		
C07		3		Y	Y	0.00	Y	Y	Y	N	Y		
C 08		4		Y	Y	0.00	Y	Y	Y	N	Y		
C09		5		Y	Y	0.00	Y	Y	Y	N	Y		
C10		6		Y	Y	0.00	Y	Y	Y	N	Y		
C11		7		Y	Y	0.00	Y	Y	Y	N	Y		
C12		8		Y	Y	0.00	Y	Y	Y	N	Y		
C13		9		Y	Y	0.00	Y	Y	Y	N	Y		
C14		10		Y	Y	0.00	Y	Y	Y	N	Y		
C15		11		Y	Y	0.00	Y	Y	Y	N	Y		
C16		12		Y	Y	0.00	Y	Y	Y	N	Y		
C17		13		Y	Y	0.00	Y	Y	Y	N	Y		
C18		14		Y	Y	0.00	Y	Y	Y	N	Y		
C19		15		Y	Y	0.00	Y	Y	Y	N	Y		
C20	Jogging frequency		0.00 to 500.00 Hz	Y	Y	0.00	Y	Y	Y	N	N	5-138	
C21	Pattern operation / timed operation	de selection)	0: 1 cycle operation 1: Repetition operation 2: Constant speed operation after 1 cycle operation 3: Timed operation	N	Y	0	Y	Y	Y	N	Y	5-139	
C 22		(Stage 1)		Y	Y	1st: 0.00	Y	Y	Y	N	Y		
C23		(Stage 2)	1st: Set run time 0.0 to 6000 s and press key.	Y	Y	2nd: F	Y	Y	Y	N	Y		
C24		(Stage 3)	2nd. press ${ }^{\text {amey }}$	Y	Y		Y	Y	Y	N	Y		
C25		(Stage 4)	3rd: Set acceleration/deceleration time 1 to 4 and press nom	Y	Y		Y	Y	Y	N	Y		
C26		(Stage 5)		Y	Y		Y	Y	Y	N	Y		
C27		(Stage 6)		Y	Y		Y	Y	Y	N	Y		
C28		(Stage 7)		Y	Y		Y	Y	Y	N	Y		
C30	Frequency setting 2		0: Keypad $\boxed{\Delta} /$ V key operation 1: Analog voltage input (Terminal [12]) (from 0 to $\pm 10 \mathrm{VDC}$) 2: Analog current input (Terminal [C1] (C1 function)) (4 to $20 \mathrm{~mA} \mathrm{DC},$,0 to 20 mA DC) 3: Analog voltage input (Terminal [12]) + Analog current input (Terminal [C1] (C1 function)) 5: Analog voltage input (Terminal [C1] (V2 function)) (0 to 10 VDC) 7: UP DOWN control 8: Keypad key operation (\square / ∇ key) (With balanceless bumpless) 10: Pattern operation 11: Digital input/output interface card (option) 12: Pulse train input	N	Y	2	Y	Y	Y	N	Y	5-141	
C31	Analog input adjustm (Terminal [12])	tment (Offset)	-5.0 to 5.0\%	Y^{*}	Y	0.0	Y	Y	Y	Y	Y	5-142	
C32		(Gain)	0.00 to 200.00\%	Y^{*}	Y	100.0	Y	Y	Y	Y	Y		
C33		(Filter)	0.00 to 5.00 s	Y	Y	0.05	Y	Y	Y	Y	Y		
C34	(Gain b	base point)	0.00 to 100.00%	Y^{*}	Y	100.0	Y	Y	Y	Y	Y		
C35	(Polarity	ty selection)	0: Bipolar 1: Unipolar	N	Y	1	Y	Y	Y	Y	Y		
C36	Analog input adjustm (Terminal [C1] (C1 fu	tment function)) (Offset)	-5.0 to 5.0\%	Y^{*}	Y	0.0	Y	Y	Y	Y	Y		
C37		(Gain)	0.00 to 200.00\%	Y^{*}	Y	100.0	Y	Y	Y	Y	Y		
C38		(Filter)	0.00 to 5.00 s	Y	Y	0.05	Y	Y	Y	Y	Y		
C39	(Gain b	base point)	0.00 to 100.00\%	Y^{*}	Y	100.0	Y	Y	Y	Y	Y		
C40	Terminal [C1] (C1 fu range / polarity sele	function) ection	0: 4 to 20 mA Unipolar 1: 0 to 20 mA Unipolar 10: 4 to 20 mA Bipolar 11: 0 to 20 mA Bipolar	N	Y	0	Y	Y	Y	Y	Y		

Code	Name	Data setting range					Drive	co	ntro		
					Factory Default	\pm	$\begin{aligned} & \underset{\sim}{ \pm} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$		\sum_{0}	
C41	Analog input adjustment (Terminal [C1] (V2 function)) (Offset)	-5.0 to 5.0\%	Y^{*}	Y	0.0	Y	Y	Y	Y	Y	
C42	(Gain) (Filter) (Gain base point) (Polarity selection)	0.00 to 200.00\%	Y^{*}	Y	100.0	Y	Y	Y	Y	Y	
C43		0.00 to 5.00 s	Y	Y	0.05	Y	Y	Y	Y	Y	
C44		0.00 to 100.00%	Y^{*}	Y	100.0	Y	Y	Y	Y	Y	
C45		0: Bipolar 1: Unipolar	N	Y	1	Y	Y	Y	Y	Y	
C50	Bias (for frequency setting 1) (Bias base point)	0.00 to 100.00%	Y^{*}	Y	0.00	Y	Y	Y	N	Y	5-144
C53	Selection of normal/inverse operation (Frequency setting 1)	0: Normal 1: Inverse	Y	Y	0	Y	Y	Y	N	Y	5-144
C55	Analog input adjustment (Terminal 12) (Bias)	-100.00 to 100.00\%	Y	Y	0.00	Y	Y	Y	Y	Y	5-142
C56	(Bias base point) (Display unit)	0.00 to 100.00 \%	Y	Y	0.00	Y	Y	Y	Y	Y	
C58		* Same as J105 (However, setting range is, 1 to 80)	Y	Y	2	Y	Y	Y	Y	Y	5-145
C59	(Maximum scale) (Minimum scale)	-999.00 to 0.00 to 9990.00	N	Y	100	Y	Y	Y	Y	Y	5-145
C60		-999.00 to 0.00 to 9990.00	N	Y	0.00	Y	Y	Y	Y	Y	
C61	Analog input adjustment (Terminal[C1](C1 function)) (Bias)	-100.00 to 100.00 \%	Y	Y	0.00	Y	Y	Y	Y	Y	5-142
C62	(Bias base point)	0.00 to 100.00%	Y	Y	0.00	Y	Y	Y	Y	Y	
C64	(Display unit) (Maximum scale)	* Same as J105 (However, setting range is, 1 to 80)	Y	Y	2	Y	Y	Y	Y	Y	5-145
C65		-999.00 to 0.00 to 9990.00	N	Y	100	Y	Y	Y	Y	Y	5-145
C66	(Minimum scale)	-999.00 to 0.00 to 9990.00	N	Y	0.00	Y	Y	Y	Y	Y	
C67	Analog input adjustment (Terminal [C1] (V2 function)) (Bias) (Bias base point)$\|$	-100.00 to 100.00 \%	Y	Y	0.00	Y	Y	Y	Y	Y	5-142
C68		0.00 to 100.00 \%	Y	Y	0.00	Y	Y	Y	Y	Y	
C70		* Same as J 105 (However, setting range is, 1 to 80)	Y	Y	2	Y	Y	Y	Y	Y	5-145
C71		-999.00 to 0.00 to 9990.00	N	Y	100	Y	Y	Y	Y	Y	5-145
C72		-999.00 to 0.00 to 9990.00	N	Y	0.00	Y	Y	Y	Y	Y	
C89	Frequency correction 1 by (Numerator)	-32768 to 32767 (Keypad display is 8000 to 7FFFH) (Interpreted as 1 when the value is set to 0)	Y	Y	0001	Y	Y	Y	N	Y	-
C90	Frequency correction 2 by (Denominator)	-32768 to 32767 (Keypad display is 8000 to 7FFFH) (Interpreted as 1 when the value is set to 0)	Y	Y	0001	Y	Y	Y	N	Y	-

P codes: Motor 1 Parameters (Motor 1 parameter)

	Name	Data setting range			Factory Default	Drive control					
Code						$\stackrel{+}{>}$	$\begin{aligned} & H \\ & \hline \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} 0 \\ 2 \\ 3 \end{array}\right\|$		\sum_{0}	
P01	Motor $1 \quad$ (No. of poles)	2 to 22 poles	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	4	Y	Y	Y	Y	Y	5-146
P02	(Rated capacity)	$\begin{aligned} & 0.01 \text { to } 1000 \mathrm{~kW}(\text { At P99 }=0 \text { or } 4,15) \\ & 0.01 \text { to } 1000 \mathrm{HP}(\text { At P99 }=1) \end{aligned}$	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	Y	Y	Y	5-146
P03	(Rated current)	0.00 to 2000A	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	Y	Y	Y	5-146
P04	(Auto-tuning)	0: Disable 1: Stop tuning 2: Rotation tuning 5: Stop tuning(\%R1, \%X)	N	N	0	Y	Y	Y	Y	Y	5-147
P05	(Online tuning)	0: Invalid 1: Valid	Y	Y	0	Y	Y	N	N	N	5-148
P06	(No-load current)	0.00 to 2000A	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	Y	Y	N	5-149
P07	(\%R1)	0.00 to 50.00\%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	Y	Y	N	
P08	(\%X)	0.00 to 50.00\%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	Y	Y	N	
P09	(Slip compensation gain for driving)	0.0 to 200.0\%	Y^{*}	Y	100.0	Y	Y	Y	N	N	5-149
P10	(Slip compensation response time)	0.01 to 10.00 s	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	0.5	Y	Y	N	N	N	
P11	(Slip compensation gain for braking) (Rated slip frequency)	0.0 to 200.0%	Y^{*}	Y	100.0	Y	Y	Y	N	N	
P12		0.00 to 15.00 Hz	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	Y	N	N	5-150
P13	(Magnetic saturation factor 1)	0.00 to 20.00%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \\ & \hline \end{aligned}$	*6	Y	Y	Y	Y	N	5-150
P16		0.0 to 300.0 \%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	5-150
P17	(Magnetic saturation factor 2)	0.0 to 300.0 \%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
P18	(Magnetic saturation factor 3) 0	0.0 to 300.0 \%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
P19	(Magnetic saturation factor 4) 0	0.0 to 300.0 \%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
P20	(Magnetic saturation factor 5)	0.0 to 300.0 \%	Y	$\begin{array}{l\|} \hline \mathrm{Y} 1 \\ \mathrm{Y} 2 \end{array}$	*6	N	N	Y	Y	N	
P30	(PMSM drive magnetic pole position detection mode)	0: Pull-in by current 1: For IPMSM (Interior permanent magnet synchronous motor) 2: For SPMSM (Surface permanent magnet synchronous motor) 3: Pull-in by current for IPMSM (Interior permanent magnet synchronous motor)	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	1	N	N	N	N	Y	5-151
P53	(\%X correction factor 1)	0 to 300%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	100	Y	Y	Y	Y	N	5-151
P55	(Torque current under vector control)	0.00 to 2000 A	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	5-151
P56	(Induced voltage factor under vector control) (PMSM armature resistance)	50 to 100%	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
P60		0.000 to 50.000 ohm	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*7	N	N	N	N	Y	5-151
P61	(PMSM d-axis inductance)	0.00 to 500.00 mH	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*7	N	N	N	N	Y	
P62	(PMSM q-axis inductance)	0.00 to 500.00 mH	N	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*7	N	N	N	N	Y	
P63	(PMSM induced voltage)	160 to 500V (400Vclass)	N	$\begin{array}{l\|} \hline \mathrm{Y} 1 \\ \mathrm{Y} 2 \end{array}$	*7	N	N	N	N	Y	
P64	(PMSM iron loss) (PMSM d-axis inductance magnetic saturation correction) *9	0.0 to 20.0 \%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*7	N	N	N	N	Y	
P65		0.0 to 100.0\% ; 999	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*7	N	N	N	N	Y	5-152

[^2]| | Name | Data setting range | | | Factory Default | Drive control | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Code | | | | | | $\stackrel{4}{>}$ | $\left\lvert\, \begin{aligned} & 4 \\ & > \\ & 0 \\ & 0 \end{aligned}\right.$ | $\begin{aligned} & 0 \\ & 2 \\ & 3 \end{aligned}$ | | \sum_{0} | |
| P74 | (PMSM reference current at starting) | 10 to 200% (100\%= motor rated current) | Y^{*} | $\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$ | *7 | N | N | N | N | Y | 5-152 |
| P83 | (Reserved for PMSM) *9 | 0.0 to 50.0; 999 | Y | $\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$ | 999 | N | N | N | N | - | 5-152 |
| P84 | (Reserved for PMSM) *9 | 0.0 to 100.0; 999 | N | $\begin{array}{\|l\|} \hline \mathrm{Y} 1 \\ \mathrm{Y} 2 \end{array}$ | 999 | N | N | N | N | - | |
| P85 | (PMSM flux limitation value) | 50.0 to 150.0; 999 | Y | $\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$ | 999 | N | N | N | N | Y | 5-152 |
| P86 | (Reserved for PMSM) | 0.0 to 100.0\% | N | N | 0.0 | N | N | N | N | - | 5-152 |
| P87 | (PMSM reference current for polarity discrimination) | 0 to 200 \% | N | $\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$ | 60 | N | N | N | N | Y | - |
| P88 | (Reserved for PMSM) *9 | 0 to 100%; 999 | N | $\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$ | 999 | N | N | N | N | - | 5-152 |
| P89 | (Reserved for PMSM) *9 | 0; 1 to 100 | N | $\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$ | 0 | N | N | N | N | - | |
| P90 | (PMSM overcurrent protection level) | 0.00(disable); 0.01 to 2000 A | N | $\begin{array}{\|l} \hline \mathrm{Y} 1 \\ \mathrm{Y} 2 \\ \hline \end{array}$ | *7 | N | N | N | N | Y | 5-152 |
| P99 | Motor 1 selection | 0: Motor characteristics 0 (IM, 8-series)
 1: Motor characteristics 1 (HP rating IMs)
 4: Other IMs
 20: Other motors(PMSMs)
 21: Motor characteristics (PMSM, GNB2 series) | N | $\begin{array}{\|l\|} \hline \mathrm{Y} 1 \\ \mathrm{Y} 2 \end{array}$ | 1 | Y | Y | Y | Y | Y | 5-152 |

\square indicates quick setup target function code
*7: Factory defaults are the parameters for PMSM (GNB2 series) and depended on motor capacity
*9: Factory use. Do not access these function codes.

H codes: High Performance Functions (High level function)

	Name	Data setting range				Factory Default	Drive control						
Code				$\stackrel{4}{>}$			\pm	O		\sum_{0}			
H02	$\begin{array}{\|cr\|}\text { Data initialization } & \\ & \text { (Method) } \\ & \text { (Target) }\end{array}$	0: Standard 1: User			N	Y	0	Y	Y	Y	Y	Y	5-153
H03		0: Manual setting value 1: Initial value (factory de 2: Initialize motor 1 para 3: Initialize motor 2 para 11: Initialize the paramete to communication) 12: Initialize the paramete	lt value) rs rs xcluding parameters related lated to customizable logic	N	N	0	Y	Y	Y	Y	Y		
H04	Auto-reset $\begin{array}{r}\text { (Times) } \\ \\ \text { (Interval) }\end{array}$	0: Disable, 1 to 20: Number of retries		Y	Y	0	Y	Y	Y	Y	Y	5-155	
H05		0.5 to 20.0 s		Y	Y	5.0	Y	Y	Y	Y	Y		
H06	Cooling fan ON/OFF control	$\begin{array}{ll} \text { 0: } & \text { Disable (Always Fan ON) } \\ \text { 1: } & \text { Enable (ON/OFF control effective) } \\ \hline \end{array}$		Y	Y	0	Y	Y	Y	Y	Y	5-156	
H07	Curve acceleration/ deceleration	0: Disable (Linear acceleration/deceleration) 1: S-curve acceleration/deceleration (Weak) 2: S-curve acceleration/deceleration (Arbitrary: According to H 57 to H 60) 3: Curve acceleration/deceleration		Y	Y	0	Y	Y	Y	N	Y	5-156	
H08	Rotational direction limitation	0: Disable 1: Enable (Reverse rotation 2: Enable (Forward rotation	nhibited) inhibited)	N	Y	0	Y	Y	Y	N	Y	5-156	
H09	Starting mode (Auto search)	0: 1: 1isable 2: 2: Enable (Only ate (At normal sentary power fail momenta	er momentary power failure) and at restart after	N	Y	0	Y	Y	N	N	N	5-157	
H11	Deceleration mode	0: Normal deceleration	ast to a stop	Y	Y	0	Y	Y	Y	N	Y	5-159	
H12	Instantaneous overcurrent limiting (Mode selection)	$0:$ Disable 1: Enable		Y	Y	1	Y	Y	N	N	N	5-159	
H13	Restart mode after momentary power failure (Restart timer) (Frequency fall rate) (Continuous running level) (Allowable momentary power failure time)	0.1 to 20.0 s		Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*2	Y	Y	Y	N	N	5-159	
H14		0.00 : Selected deceleration time, 0.01 to $100.00 \mathrm{~Hz} / \mathrm{s}$, 999 (According to current limiter)		Y	Y	999	Y	Y	N	N	N		
H15		400 to 600 V : (400 V class)		Y	Y2	470	Y	Y	Y	N	Y		
H16		0.0 to 30.0s, 999 (Depend on inverter judgment)		Y	Y	999	Y	Y	Y	N	Y		
H18	Torque control (Mode selection)	$\begin{array}{\|ll\|} \hline \text { 0: } & \text { Disable (Speed control) } \\ \text { 2: } & \text { Function (Torque current command) } \\ \text { 3: } & \text { Function (Torque command) } \\ \hline \end{array}$		N	Y	0	N	N	Y	Y	N	5-160	
H26	Thermistor (for motor) (Mode selection) (Level)	```0: Disable PTC: \ PTC: Output motor overheat detected "THM" and continue to run```		Y	Y	0	Y	Y	Y	Y	Y	5-162	
H27		0.00 to 5.00 V		Y	Y	1.60	Y	Y	Y	Y	Y		
H28	Droop control	-60.0 to 0.0 Hz		Y	Y	0.0	Y	Y	Y	N	N	5-164	
H30	Communication link function (Mode selection)	Frequency command Run command 0: F01/C30 F02 1: RS-485 (Port 1) F02 2: F01/C30 RS-485 (Port 1) 3: RS-485 (Port 1) RS-485 (Port 1) 4: RS-485 (Port 2) F02 5: RS-485 (Port 2) RS-485 (Port 1) 6: F01/C30 (Port 1) RS-485 (Port 2) 7: RS-485 (Port 2) RS-485 (Port 2) 8: RS-485 (Port 2) RS-485 (Port 2)		Y	Y	0	Y	Y	Y	Y	Y	5-165	
H42	Capacitance of DC link bus capacitor	For adjustment at replacement (0000 to FFFF (in hexadecimal))		Y	N	-	Y	Y	Y	Y	Y	5-167	
H43	Cumulative run time of cooling fan	For adjustment at replacement Displays the cumulative run time of cooling fan in units of ten hours.		Y	N	-	Y	Y	Y	Y	Y		
H44	Startup count for motor 1	For adjustment at replacement (0000 to FFFF in hexadecimal)		Y	N	-	Y	Y	Y	Y	Y	5-171	
H45	Mock alarm	$\begin{array}{ll} \text { 0: } & \text { Disable } \\ \text { 1: } & \text { Occurrence of mock Alarm } \end{array}$		Y	N	0	Y	Y	Y	Y	Y	5-171	
H46	Starting mode (Auto search delay time 2)	0.1 to 20.0 s		Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	N	N	Y	5-171	

*2: Factory defaults are depended on motor capacity. Refer to "5.2.3 Factory default value per applicable electric motor capacitance".
*6: Factory defaults are depended on motor capacity. Refer to the Doesa VF1A series User's Manual, "5.2.4 Motor constant".

	Name	Data setting range	Биب̣иuид иәчм әбиецว		Factory Default	Drive control					
Code						$\stackrel{*}{>}$	$\left\|\begin{array}{l} \pm \\ \vdots \\ 0 \\ 0 \end{array}\right\|$	O		,	
H47	Initial capacitance of DC link bus capacitor	For adjustment at replacement (0000 to FFFF in hexadecimal)	Y	N	-	Y	Y	Y	Y	Y	5-171
H48	Cumulative run time of capacitors on printed circuit boards	For adjustment at replacement Change in cumulative motor run time (Reset is enabled) (in units of ten hours)	Y	N	-	Y	Y	Y	Y	Y	$\begin{aligned} & 5-167 \\ & 5-171 \end{aligned}$
H49	Starting mode (Auto search delay time 1)	0.0 to 10.0 s	Y	Y	0.0	Y	Y	Y	N	Y	5-172
H50	Non-linear V/f 1 (Frequency)	0.0 (Cancel), 0.1 to 500.0 Hz	N	Y	0.0	Y	Y	N	N	N	5-172
H51	(Voltage)	0 to 500V:AVR operation (400V class)	N	Y2	0	Y	Y	N	N	N	
H52	Non-linear V/f 2 (Frequency)	0.0 (Cancel), 0.1 to 500.0 Hz	N	Y	0.0	Y	Y	N	N	N	
H53	(Voltage)	0 to $500 \mathrm{~V}:$ AVR operation (400 V class)	N	Y2	0	Y	Y	N	N	N	
H54	Acceleration time (Jogging)	0.00 to 6000 s	Y	Y	6.00	Y	Y	Y	N	Y	5-172
H55	Deceleration time (Jogging)	0.00 to 6000 s	Y	Y	or	Y	Y	Y	N	Y	
H56	Deceleration time for forced stop	0.00 to 6000 s	Y	Y	*10	Y	Y	Y	N	Y	
H57	1st S-curve acceleration range (At starting)	0 to 100\%	Y	Y	10	Y	Y	Y	N	Y	
H58	2nd S-curve acceleration range (At arrival)	0 to 100%	Y	Y	10	Y	Y	Y	N	Y	
H59	1st S-curve deceleration range (At starting)	0 to 100%	Y	Y	10	Y	Y	Y	N	Y	
H60	2nd S-curve deceleration range (At arrival)	0 to 100\%	Y	Y	10	Y	Y	Y	N	Y	
H61	UP/DOWN control (Initial frequency setting)	0 : Initial value is 0.00 Hz 1: Last UP/DOWN command value on releasing the run command.	N	Y	1	Y	Y	Y	N	Y	5-172
H63	Low limiter (Mode selection)	0: Limit by F16 (Frequency limiter: Low) and continue to run 1: If the output frequency lowers below the one limited by F16 (Frequency limiter: Low), decelerate to stop the motor.	Y	Y	0	Y	Y	Y	N	Y	5-172
H64	(Lower limiting frequency)	0.0: Depends on F16 (Frequency limiter, Low) 0.1 to 60.0 Hz	Y	Y	1.6	Y	Y	N	N	Y	5-172
H65	Non-linear V/f 3 (Frequency)	0.0 (Cancel), 0.1 to 500.0 Hz	N	Y	0.0	Y	Y	N	N	N	5-172
H66	(Voltage)	0 to 500V: AVR operation (400 V class)	N	Y2	0	Y	Y	N	N	N	
H68	Slip compensation 1 (Operating conditions selection)	0 : Enable during acceleration/deceleration, enable at base frequency or higher 1: Disable during acceleration/deceleration, enable at base frequency or higher 2: Enable during acceleration/deceleration, disable at base frequency or higher 3: Disable during acceleration/deceleration, disable at base frequency or higher	N	Y	0	Y	Y	N	N	N	5-172
H69	Anti-regenerative control (Mode selection)	0: Disable 2: Torque limit control with force-to-stop (Cancel limit control after three times of deceleration time has passed) 3: DC link bus voltage control with force-to-stop (Cancel voltage control after three times of deceleration time has passed) 4: Torque limit control without force-to-stop 5: DC link bus voltage control without force-to-stop	Y	Y	0	Y	Y	Y	N	Y	5-173
H70	Overload prevention control	0.00 : Follow the deceleration time selected 0.01 to $100.00 \mathrm{~Hz} / \mathrm{s}, 999$ (Cancel)	Y	Y	999	Y	Y	Y	N	Y	5-174
H71	Deceleration characteristics	0: Disable 1: Enable	Y	Y	0	Y	Y	Y	N	N	5-174
H72	Main power shutdown detection (Mode selection)	0: Disable 1: Enable (Available VF1A-G59A0S4 or above)	Y	Y	1	Y	Y	Y	Y	Y	5-174
H74	Torque limiter (Control target)	$\begin{aligned} & \text { 0: Torque limit } \\ & \text { 1: Torque current limit } \end{aligned}$	N	Y	1	N	N	Y	Y	Y	5-175
H76	Torque limiter (Braking) (Frequency rising limiter for braking)	0.0 to 500.0 Hz	Y	Y	5.0	Y	Y	N	N	N	5-175
H77	Service life of DC link bus capacitor (Remaining time)	0 to 8760 (in units of ten hours)	Y	N	$\begin{gathered} 6132 \\ \text { (ND spec) } \\ \hline \end{gathered}$	Y	Y	Y	Y	Y	5-175

*10:6.00s for VF1A-G44A0S4 or below; 20.0s for VF1A-G59A0S4 or above.

		Data setting range		읒$\stackrel{0}{0}$00$\stackrel{\pi}{0}$0	Factory Default	Drive control					
Code	Name					$\stackrel{4}{>}$	$\left\|\begin{array}{l} N \\ \vdots \\ 0 \\ \Omega \end{array}\right\|$	O		,	
H78	Maintenance interval (M1)	0 (Disable): 1 to 9999 (in units of ten hours)	Y	N	$\begin{gathered} 6132 \\ \text { (ND spec) } \\ \hline \end{gathered}$	Y	Y	Y	Y	Y	5-175
H79	Preset startup count for maintenance (M1)	0000 (Disable): 0001 to FFFF (in hexadecimal)	Y	N	0	Y	Y	Y	Y	Y	5-176
H80	Output current fluctuation damping gain for motor 1	0.00 to 1.00	Y	Y	0.20	Y	Y	N	N	N	5-176
H81	Light alarm selection 1	0000 to FFFF (in hexadecimal)	Y	Y	0	Y	Y	Y	Y	Y	5-177
H82	Light alarm selection 2	0000 to FFFF (in hexadecimal)	Y	Y	0	Y	Y	Y	Y	Y	
H84	Pre-excitation (Level)	100 to 400% (Motor rated magnetizing current for 100\%)	Y	Y	100	N	N	Y	Y	N	5-179
H85	(Timer)	$0.00 ; 0.01$ to 30.00 s 0.00 ; Invalid 0.01 to 30.00 s	Y	Y	0.00	N	N	Y	Y	N	
H86	Reserved *9	0 to 2	Y	Y	0	-	-	-	-	-	5-181
H89	Reserved *9	0 to 1	Y	Y	1	-	-	-	-	-	5-181
H90	Reserved *9	0 to 1	Y	Y	0	-	-	-	-	-	5-181
H91	PID feedback wire break detection	0.0 (Alarm disable): 0.1 to 60.0 s	Y	Y	0.0	Y	Y	Y	N	Y	5-181
H92	Continuous running at the momentary power failure	0.000 to 10.000 times; 999 999:Manufacturer adjustment value	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	999	Y	Y	Y	N	Y	5-181
H93		$\begin{aligned} & \text { 0.010 to } 10.000 \mathrm{~s} ; 999 \\ & \text { 999:Manufacturer adjustment value } \end{aligned}$	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	999	Y	Y	Y	N	Y	
H94	Cumulative motor run time 1	0 to 9999 Change in cumulative motor run time (Reset is enabled) (in units of 10 hours)	N	N	-	Y	Y	Y	Y	Y	$\begin{array}{\|l\|} \hline 5-175 \\ 5-181 \end{array}$
H95	DC braking (Braking response mode)	0: $\begin{array}{ll}\text { 1: } & \text { Quick response } \\ & \end{array}$	Y	Y	1	Y	Y	N	N	N	$\begin{array}{\|c\|} \hline 5-72 \\ 5-181 \end{array}$
H96	STOP key priority/ Start check function	0: STOP key priority disable/ Start check function disable STOP key priority enable/ Start check function disable STOP key priority disable/ Start check function enable 3: STOP key priority enable/ Start check function enable	Y	Y	3	Y	Y	Y	Y	Y	5-182
H97	Clear alarm data	0: Disable 1: Alarm data clear (Automatically return to 0 after clearing data)	Y	N	0	Y	Y	Y	Y	Y	5-182
H98	Protection/Maintenance function \quad (Mode selection)	0 to 127 (Data is displayed in decimal) Bit 0: Lower the carrier frequency automatically (0: Disable; 1: Enable) Bit 1: Input phase loss protection (0: Disable; 1: Enable) Bit 2: Output phase loss protection (0: Disable; 1: Enable) Bit 3: Main circuit capacitor life judgment selection (0: Factory default referenced; 1 User measurement value standard) Bit 4: Judge the life of main circuit capacitor (0: Disable; 1: Enable) Bit 5: Detect DC fan lock (0: Enable; 1: Disable) Bit 6: Braking transistor error detection (0: Disable; 1: Enable)	Y	Y	*11	Y	Y	Y	Y	Y	5-183
H99	Password 2 setting/check	0000 to FFFF (Hexadecimal)	Y	N	0	Y	Y	Y	Y	Y	5-185
H101	Destination	0: Not selected 1: Japan 2: Asia 3: China 4: Europe 5: Americas 7: Korea	N	Y	5	Y	Y	Y	Y	Y	5-188
H111	UPS operation level	240 to 440 VDC: (400 V class)	Y	Y2	440	Y	Y	Y	N	N	5-188
H114	Anti-regenerative control (Level)	0.0 to 50.0%, 999: disabled	Y	Y	999	Y	Y	Y	N	Y	5-188
H147	Speed control (Jogging) FF (Gain)	0.00 to 99.99 s	Y^{*}	Y	0.00	N	N	Y	N	N	$\begin{aligned} & 5-188 \\ & 5-228 \end{aligned}$

[^3]*11: VF1A-G72A0S4 or below: 83, VF1A-G85A0S4 or above: 19.

*9: Factory use. Do not access these function codes.

A codes: Motor 2 Parameters (Motor 2 parameters)

			Би!̣иия иәчм әбиعчว	$\begin{aligned} & \text { 잋 } \\ & \text { 음 } \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	Factory Default	Drive control					
Code	Name	Data setting range				$\stackrel{4}{>}$	$\begin{array}{\|c} \substack{n \\ 0 \\ 0 \\ 0} \end{array}$	O		,	
A01	Maximum output frequency 2	25.0 to 500.0 Hz	N	Y	60.0	Y	Y	Y	Y	N	-
A02	Base frequency 2	25.0 to 500.0 Hz	N	Y	60.0	Y	Y	Y	Y	N	
A03	Rated voltage at base frequency 2	0: AVR disable (output voltage proportional to power voltage) 160 to 500 V : AVR operation (400 V class)	N	Y2	460	Y	Y	Y	Y	N	
A04	Maximum output voltage 2	160 to 500V: AVR operation (400 V class)	N	Y2		Y	Y	N	Y	N	
A05	Torque boost 2	0.0 to 20.0\% (\% value against base frequency voltage 2)	Y	Y	*2	Y	Y	N	N	N	
A06	Electronic thermal overload protection for motor 2 (Select motor characteristics)	1: Enable (For a general-purpose motor with self-cooling fan) 2: Enable (For an inverter-driven motor with separately powered cooling fan)	Y	Y	1	Y	Y	Y	Y	N	
A07	(Overload detection level)	0.00 (disable), current value of 1 to 135% of inverter rated current	Y	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*3	Y	Y	Y	Y	N	
A08	(Thermal time constant)	0.5 to 75.0 min	Y	Y	*4	Y	Y	Y	Y	N	
A09	DC braking 2 (Braking starting frequency)	0.0 to 60.0 Hz	Y	Y	0.0	Y	Y	Y	N	N	
A10	(Braking level)	0 to 100\% (HHD mode), 0 to 80% (HD/HND mode) 0 to 60\% (ND mode)	Y	Y	0	Y	Y	Y	N	N	
A11	(Braking time)	0.00 (Disable): 0.01 to 30.00 s	Y	Y	0.00	Y	Y	Y	N	N	
A12	Starting frequency 2	0.0 to 60.0 Hz	Y	Y	0.5	Y	Y	Y	N	N	
A13	Load selection / Auto torque boost/ Auto energy-saving operation 2	0: Variable torque load 1: Constant torque load 2: Auto torque boost 3: Auto energy-saving operation (variable torque load) 4: Auto energy-saving operation (constant torque load) 5: Auto energy-saving operation with auto torque boost	N	Y	1	Y	Y	Y	N	N	
A14	Drive control selection 2	0: V/f control without slip compensation 1: Vector control without speed sensor (Dynamic torque vector control) 2: V/f control with slip compensation 3: V/f control with speed sensor 4: V/f control with speed sensor and auto torque boost 6: Vector control for induction motor with speed sensor	N	Y	0	Y	Y	Y	Y	N	
A15	Motor 2 (No. of poles)	2 to 22 poles	N	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	4	Y	Y	Y	Y	N	
A16	(Rated capacity)	$\begin{aligned} & 0.01 \text { to } 1000 \mathrm{~kW}(\text { At P39 }=0,4) \\ & 0.01 \text { to } 1000 \mathrm{HP}(\text { At P39 }=1) \end{aligned}$	N	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	Y	Y	Y	Y	N	
A17	(Rated current)	0.00 to 2000A	N	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	Y	Y	Y	Y	N	
A18	(Auto-tuning)	0: Disable 1: Stop tuning 2: Rotation tuning 5: Stop tuning (\%R1, \%X)	N	N	0	Y	Y	Y	Y	N	
A19	(Online tuning)	0: Invalid 1:Valid	Y	Y	0	Y	N	N	N	N	
A20	(No-load current)	0.00 to 2000A	N	$\begin{aligned} & \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	Y	Y	Y	Y	N	
A21	$(\% \mathrm{R} 1)$	0.00 to 50.00\%	Y	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	Y	Y	Y	Y	N	
A22	(\%X)	0.00 to 50.00\%	Y	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	Y	Y	Y	Y	N	

*2: Factory defaults are depended on motor capacity. Refer to "5.2.3 Factory default value per applicable electric motor capacitance".
*3: The motor rated current is automatically set. Refer to the Doesa VF1A series User's Manual, "5.2.4 Motor constant" (function code P03).
*4: Standard applicable electric motor is 5.0 min for VF1A-G44A0S4 or lower and 10.0 min for VF1A-G59A0S4 or higher.
*6: Factory defaults are depended on motor capacity. Refer to the Doesa VF1A series User's Manual, "5.2.4 Motor constant".

	Name	Data setting range			Factory Default	Drive control					
Code						$\stackrel{+}{>}$	$\left\lvert\, \begin{aligned} & + \\ & \hline \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 3 \end{aligned}$		\sum_{2}	
A23	Motor 2 (Slip compensation gain for driving)	0.0 to 200.0\%	Y^{*}	Y	100.0	Y	Y	Y	N	N	
A24	(Slip compensation response time)	0.01 to 10.00 s	Y	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	0.50	Y	Y	N	N	N	
A25	(Slip compensation gain for braking)	0.0 to 200.0\%	Y^{*}	Y	100.0	Y	Y	Y	N	N	
A26	(Rated slip frequency)	0.00 to 15.00 Hz	N	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	Y	Y	Y	N	N	
A27	(Iron loss factor 1)	0.00 to 20.00\%	Y	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	* 6	Y	Y	Y	Y	N	
A30	(Magnetic saturation factor 1)	0.0 to 300.0 \%	Y	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
A31	(Magnetic saturation factor 2)	0.0 to 300.0 \%	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
A32	(Magnetic saturation factor 3)	0.0 to 300.0 \%	Y	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	N	N	Y	Y	N	
A33	(Magnetic saturation factor 4)	0.0 to 300.0 \%	Y	$\begin{aligned} & \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	N	N	Y	Y	N	
A34	(Magnetic saturation factor 5)	0.0 to 300.0 \%	Y	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
A39	Motor 2 selection	0: Motor characteristics 0 (IM, 8-series) 1: Motor characteristics 1 (HP rating IMs) 4: Other IMs	N	$\begin{aligned} & \hline \text { Y1 } \\ & \text { Y2 } \end{aligned}$	1	Y	Y	Y	Y	N	
A40	Slip compensation 2 (Operating conditions selection)	0: Enable during acceleration/deceleration, enable at base frequency or higher 1: Disable during acceleration/deceleration, enable at base frequency or higher 2: Enable during acceleration/deceleration, disable at base frequency or higher 3: Disable during acceleration/deceleration, disable at base frequency or higher	N	Y	0	Y	Y	N	N	N	
A41	Output current fluctuation damping gain for motor 2	0.00 to 1.00	Y	Y	0.20	Y	Y	N	N	N	
A43	Speed control 2 (Speed command filter)	0.000 to 5.000 s	Y	Y	0.020	N	Y	Y	N	Y	5-226
A44	(Speed detection filter)	0.000 to 0.100 s	Y^{*}	Y	0.005	N	Y	Y	N	Y	
A45	P (Gain)	0.1 to 200.0 times	Y^{*}	Y	10.0	N	Y	Y	N	Y	
A46	1 (Integral time)	0.001 to $9.999 \mathrm{~s} ; 999$ (Cancel integral term)	Y	Y	0.100	N	Y	Y	N	Y	
A47	FF (Gain)	0.00 to 99.99 s	Y	Y	0.00	N	N	Y	N	Y	
A49	(Notch filter resonance frequency)	1 to 200 Hz	Y	Y	200	N	N	Y	N	N	
A50	(Notch filter attenuation level)	0 to 20 dB	Y	Y	0	N	N	Y	N	N	
A51	Cumulative motor run time 2	0 to 9999 Change in cumulative motor run time (Reset is enabled) (in units of 10 hours)	N	N	-	Y	Y	Y	Y	N	-
A52	Startup counter for motor 2	For adjustment at replacement (0000 to FFFF in hexadecimal)	Y	N	-	Y	Y	Y	Y	N	
A53	Motor 2 (\%X correction factor 1)	0 to 300%	Y	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \\ & \hline \end{aligned}$	100	Y	Y	Y	Y	N	
A55	(Torque current under vector control)	0.00 to 2000 A	N	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*6	N	N	Y	Y	N	
A56	(Induced voltage factor under vector control)	50 to 100%	N	$\begin{aligned} & \text { Y1 } \\ & \text { Y2 } \end{aligned}$	*6	N	N	Y	Y	N	
A98	Motor $2 \quad$ (Function selection)	0 to 255 (Data is displayed in decimal, Meaning of each bit 0: Disable; 1 Enable) bit0: \quad Current limiter (F43, F44) bit1: \quad Rotational direction control (H08) bit2: \quad Non-linear V/f (H50 to H53, H65, H66) bit3: \quad PID control (J01 to J62, H91) bit4: \quad Brake signal bit5: \quad Braking timer at the Startup (H195) Bit6 to 7: Reserved *9	N	Y	0	Y	Y	Y	Y	Y	5-193

*6: Factory defaults are depended on motor capacity. Refer to the Doesa VF1A series User's Manual, "5.2.4 Motor constant".
*9: Factory use. Do not change these function codes.

- b codes: Motor control parameter 3

Code	Name	Data setting range		$\begin{aligned} & \text { 을 } \\ & \text { 음 } \\ & 0 \\ & \frac{\pi}{\tilde{0}} \end{aligned}$	Factory Default	Drive control					
						$\stackrel{ }{5}$	$\left.\begin{array}{\|c} \pm \\ \hline \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$		\sum	
b43	Speed control 3 (Speed command filter)	0.000 to 5.000 s	Y	Y	0.020	N	Y	Y	N	Y	5-226
b44	(Speed detection filter)	0.000 to 0.100 s	Y^{*}	Y	0.005	N	Y	Y	N	Y	
b45	P (Gain)	0.1 to 200.0	Y^{*}	Y	10.0	N	Y	Y	N	Y	
b46	1 (Integral time)	0.001 to $9.999 \mathrm{~s} ; 999$ (Cancel integral term)	Y^{*}	Y	0.100	N	Y	Y	N	Y	
b47	FF (Gain)	0.00 to 99.99	Y^{*}	Y	0.00	N	N	Y	N	Y	
b49	(Notch filter resonance frequency)	1 to 200 Hz	Y	Y	200	N	N	Y	N	N	
b50	(Notch filter attenuation level)	0 to 20dB	Y	Y	0	N	N	Y	N	N	

- r codes: Motor control parameter 4

Code	Name	Data setting range			Factory Default	Drive control					
						$\stackrel{\square}{>}$	$\begin{array}{\|c} \pm \\ \hline \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 2 \\ & 3 \end{aligned}$	은 0 0 0 0 0 0 -	\sum_{0}	
r43	Speed control 4 (Speed command filter)	0.000 to 5.000 s	Y	Y	0.020	N	Y	Y	N	Y	5-226
r44	(Speed detection filter)	0.000 to 0.100 s	Y^{*}	Y	0.005	N	Y	Y	N	Y	
r45	P (Gain)	0.1 to 200.0 times	Y^{*}	Y	10.0	N	Y	Y	N	Y	
r46	I (Integral time)	0.001 to $9.999 \mathrm{~s} ; 999$ (Cancel integral term)	Y^{*}	Y	0.100	N	Y	Y	N	Y	
r47	FF (Gain)	0.00 to 99.99	Y^{*}	Y	0.00	N	N	Y	N	Y	
r49	(Notch filter resonance frequency)	1 to 200 Hz	Y	Y	200	N	N	Y	N	N	
r50	(Notch filter attenuation level)	0 to 20 dB	Y	Y	0	N	N	Y	N	N	

J codes: Application Functions 1 (Application function 1)

Code	Name	Data setting range			Factory Default	Drive control					
						$\stackrel{+}{>}$	$\begin{aligned} & \pm \\ & \mathbf{N} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 3 \end{aligned}$		\sum_{0}	
J105	PID control (Display unit)	```0 to 80 0: Inherit (PID Control }1\mathrm{ feedback unit) none % r/min kW [Flow] 20: m3/s 21: m3/min 22: m3/h 23: L/s 24: L/min 25: L/h [Pressure] 40: Pa 41: kPa 42: MPa 43: mbar 44: bar 45: mmHg 46: psi PSI (Pounds per square inch absolute) 47: mWG 48: inWG [Temperature] 60: K 61: degreeC 62: degreeF [Concentration] 80: ppm```	N	Y	0	Y	Y	Y	N	Y	5-225
J106	(Maximum scale) (Minimum scale)	-999.00 to 0.00 to 9990.00	N	Y	100	Y	Y	Y	N	Y	
J107		-999.00 to 0.00 to 9990.00	N	Y	0.00	Y	Y	Y	N	Y	
J136	PID multistep command (Multistep command 1) (Multistep command 2) (Multistep command 3)	-999.00 to 0.00 to 9990.00	Y	Y	0.00	Y	Y	Y	N	Y	5-225
$J 137$		-999.00 to 0.00 to 9990.00	Y	Y	0.00	Y	Y	Y	N	Y	
J138		-999.00 to 0.00 to 9990.00	Y	Y	0.00	Y	Y	Y	N	Y	

- d codes: Application Functions 2 (Application function 2)

		Data setting range			Factory Default	Drive control					
Code	Name					$\stackrel{4}{>}$	$\begin{aligned} & \pm \\ & \hline \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & 3 \end{aligned}$	은	,	
d01	Speed control 1 (Speed command filter)	0.000 to 5.000 s	Y	Y	0.020	N	Y	Y	N	Y	5-226
d02	(Speed detection filter)	0.000 to 0.100 s	Y^{*}	Y	0.005	N	Y	Y	N	Y	
d03	P (Gain)	0.1 to 200.0 times	Y^{*}	Y	10.0	N	Y	Y	N	Y	
d04	1 (Integral time)	0.001 to $9.999 \mathrm{~s} ; 999$ (Cancel integral term)	Y	Y	0.100	N	Y	Y	N	Y	
d05	FF (Gain)	0.00 to 99.99 s	Y	Y	0.00	N	N	Y	N	Y	
d07	(Notch filter resonance frequency)	1 to 200 Hz	Y	Y	200	N	N	Y	N	N	
d08	(Notch filter attenuation level)	0 to 20 dB	Y	Y	0	N	N	Y	N	N	
d09	Speed control (Jogging) (Speed command filter)	0.000 to 5.000 s	Y	Y	0.020	N	Y	Y	N	N	5-228
d10	(Speed detection filter)	0.000 to 0.100 s	Y^{\star}	Y	0.005	N	Y	Y	N	N	
d11	P (Gain)	0.1 to 200.0 times	Y^{*}	Y	10.0	N	Y	Y	N	N	
d12	1 (Integral time)	0.001 to $9.999 \mathrm{~s} ; 999$ (Cancel integral term)	Y^{*}	Y	0.100	N	Y	Y	N	N	
d14	Feedback Input (Pulse input format)	0: Frequency and direction 1: Forward and reverse pulse 2: Quadrature A / B signal(B phase lead) 3: Quadrature A / B signal(A phase lead)	N	Y	2	N	Y	Y	Y	N Y	5-229
d15	(Encoder pulse resolution)	0014 to EA60(Hexadecimal) pulses (20 to 60000 (Decimal) pulses)	N	Y	$\begin{gathered} 0400 \\ (1024) \end{gathered}$	N	Y	Y	Y		
d16	(Pulse scaling factor 1) (Pulse scaling factor 2)	1 to 9999	N	Y	1	N	Y	Y	Y	N	
d17		1 to 9999	N	Y	1	N	Y	Y	Y	N	
d21	Speed agreement / PG error (Hysteresis width) (Detection timer)	0.0 to 50.0 \%	Y	Y	10.0	N	Y	Y	N	Y	5-231
d22		0.00 to 10.00 s	Y	Y	0.50	N	Y	Y	N	Y	
d23	PG error processing	0 : Continue to run 1 1: Stop with alarm 1 2: Stop with alarm 2 3: Continue to run 2 4: Stop with alarm 3 5: Stop with alarm 4	N	Y	2	N	Y	Y	N	Y	
d24	Zero speed control	0: Disable at startup 1: Enable at startup	N	Y	0	N	N	Y	N	N	5-232
d25	ASR switching time	0.000 to 1.000 s	Y	Y	0.000	N	Y	Y	Y	Y	5-232
d32	Speed limit / Over speed level 1	0 to 110 \%	Y	Y	100	N	N	Y	Y	Y	5-232
d33	Speed limit / Over speed level 2	0 to 110 \%	Y	Y	100	N	N	Y	Y	Y	
d35	Over speed detection level	$\begin{aligned} & 0 \text { to } 120 \% ; 999 \\ & 999: \text { Depend on d32, d33 } \end{aligned}$	Y	Y	999	N	Y	Y	Y	Y	5-232
d41	Application specific function selection	0: Invalid Line speed control with speed sensor 2: Master-follower operation (Immediate synchronization mode at the start, without Z phase) 3: Master-follower operation (Start after synchronization mode) 4: Master-follower operation (Immediate synchronization mode at the start, with Z phase)	N	Y	0	N	Y	N	N	N	5-232
d51	Reserved *9	-500 to 500	N	Y	20	Y	Y	Y	Y	Y	5-235
d52	Reserved *9	-500 to 500	N	Y	20	Y	Y	Y	Y	Y	
d55	Reserved *9	0000 to 00FF (Display in hexadecimal)	N	Y	0	Y	Y	Y	Y	Y	
d59	Command (Pulse train input) (Pulse input format)	0: Frequency and direction 1: Forward and reverse pulse 2: Quadrature A/B signal(B phase lead) 3: Quadrature A/B signal(A phase lead)	N	Y	0	Y	Y	Y	Y	Y	5-242
d60	(Encoder pulse resolution)	0014 to 0E10 (Hexadecimal) pulses (20 to 3600 (Decimal) pulses)	N	Y	$\begin{gathered} 0400 \\ (1024) \\ \hline \end{gathered}$	N	Y	Y	N	N	5-235
d61	(Filter time constant)	0.000 to 5.000 s	Y	Y	0.005	Y	Y	Y	Y	Y	5-235
d62	(Pulse scaling factor 1)	1 to 9999	Y	Y	1	Y	Y	Y	Y	Y	
d63	(Pulse scaling factor 2)	1 to 9999	Y	Y	1	Y	Y	Y	Y	Y	

*9: Factory use. Do not change these function codes.

		Data setting range			Factory Default	Drive control					
Code	Name					\pm	-	$\begin{aligned} & \text { O} \\ & \frac{2}{3} \end{aligned}$,	
d67	PMSM starting mode (Auto search)	Disable Enable (At restart after momentary power failure) Enable (At restart after momentary power failure and at normal start)	N	Y	2	N	N	N	N	Y	$\begin{aligned} & 5-157 \\ & 5-235 \end{aligned}$
d69	Reserved *9	30.0 to 100.0 Hz	Y	Y	30.0	Y	Y	N	N	N	5-235
d70	Speed control limiter	0.00 to 100.00 \%	Y	Y	100.00	N	Y	N	N	N	5-245
d71	Master follower control (Main speed regulator gain)	0.00 to 1.50 times	Y	Y	1.00	N	Y	Y	N	N	5-236
d72	(APR gain)	0.00 to 200.00 times	Y	Y	15.00	N	Y	Y	N	N	
d73		20 to 200 \%; 999: Invalid	Y	Y	999	N	Y	Y	N	N	
d74	(APR negative output limiter)	20 to 200 \%; 999: Invalid	Y	Y	999	N	Y	Y	N	N	
d75	(Z phase alignment gain)	0.00 to 10.00 times	Y	Y	1.00	N	Y	Y	N	N	
d76	(Offset angle between master and follower)	0 to 359 deg	Y	Y	0	N	Y	Y	N	N	
d77	(Synchronous completion detection angle)	0 to 359 deg	Y	Y	15	N	Y	Y	N	N	
d78	(Excessive error detection level)	0 to 65535 (10 unit pulse)	Y	Y	65535	N	Y	Y	N	N	
d79	Reserved *9	$\begin{array}{\|l\|} \hline 0 ; 80 \text { to } 240 \mathrm{~V} \text { (} 200 \mathrm{~V} \text { order) } \\ 160 \text { to } 500 \mathrm{~V} \text { (400V order); } 999 \\ \hline \end{array}$	N	Y2	0	N	N	N	N	Y	5-235
d88	Reserved *9	0.00 to 100.00%, 999	Y	Y	999	N	N	N	N	Y	
d90	Magnetic flux level during deceleration under vector control	100 to 300%	Y	Y	150	N	N	Y	N	N	5-245
d91	Reserved *9	0.00 to 2.00, 999	Y	Y	999	-	-	-	-	-	5-235
d92	Reserved *9	0.00 to 10.00	Y	Y	0.30	-	-	-	-	-	
d93	Reserved *9	0.00 to 10.00; 999	Y	Y	999	N	N	N	N	Y	
d94	Reserved *9	0.00 to 10.00; 999	Y	Y	999	N	N	N	N	Y	
d95	Reserved *9	0.00 to 10.00; 999	Y	Y	999	N	N	N	N	Y	
d96	Reserved *9	-50.0 to 50.0; 999	Y	Y	999	N	N	N	N	Y	
d97	Reserved *9	-50.0 to 50.0; 999	Y	Y	999	N	N	N	N	Y	
d99	Extension function 1	0 to 127	Y	Y	0						5-245
		Bit 0-2:Reserved *9				-	-	-	-	-	
		Bit 3: JOG operation from communication (0: Disable; 1: Enable)				Y	Y	Y	N	Y	
		Bit 4-8:Reserved *9				-	-	-	-	-	

Factory use. Do not change these function codes.

■ U codes: Application Functions 3 (Customizable logic)

Code	Name	Data setting range		$\begin{aligned} & \text { 을 } \\ & \text { 음 } \\ & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$	Factory Default	Drive control					
						$\stackrel{4}{>}$	$\xrightarrow{ \pm}$	$\begin{aligned} & 0 \\ & 2 \\ & 3 \end{aligned}$		\sum_{0}	
U00	Customizable logic (Mode selection)	```0: Disable 1: Enable (Customizable logic operation) ECL alarm occurs when the value is changed from 1 to 0 during operation.```	Y	Y	0	Y	Y	Y	Y	Y	5-248
U01	Customizable logic: Step 1 (Block selection)		N	Y	0	Y	Y	Y	Y	Y	

*: The use of the option card lets those functions remain in effect.
Customizable logic Step 1 to 14 function code is assigned as follows: Setting value is the same as U01 to U05.

	Step1	Step2	Step3	Step4	Step5	Step6	Step7	Step8	Step9	Step10
Block selection	U01	U06	U11	U16	U21	U26	U31	U36	U41	U46
Input 1	U02	U07	U12	U17	U22	U27	U32	U37	U42	U47
Input 2	U03	U08	U13	U18	U23	U28	U33	U38	U43	U48
Function 1	U04	U09	U14	U19	U24	U29	U34	U39	U44	U49
Function2	U05	U10	U15	U20	U25	U30	U35	U40	U45	U50
	Step11	Step12	Step13	Step14						
Block selection	U51	U56	U61	U66						
Input 1	U52	U57	U62	U67						
Input 2	U53	U58	U63	U68						
Function 1	U54	U59	U64	U69						
Function 2	U55	U60	U65	U70						

		Data setting range			Factory Default	Drive control					
Code	Name					\pm	$\left\|\begin{array}{c} * \\ > \\ 0 \\ Q \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 3 \\ 3 \end{array}\right\|$	-	\sum_{0}	
U121	Customizable logic (User parameter 1)	-9990.00 to 0.00 to 9990.00	Y	Y	0.00	Y	Y	Y	Y	Y	5-248
U122	(User parameter 3)					Y	Y	Y	Y	Y	
U123						Y	Y	Y	Y	Y	
U124	(User parameter 4)					Y Y	Y	Y	Y	Y	
U125	(User parameter 5)					Y Y	Y	Y	Y	Y	
U126	(User parameter 6)					Y	Y	Y	Y	Y	
U127	(User parameter 7)					Y Y	Y	Y	Y	Y	
U128	(User parameter 8)					Y Y	Y	Y	Y	Y	
U129	(User parameter 9)					Y Y	Y	Y	Y	Y	
U130	(User parameter 10)					Y	Y	Y	Y	Y	
U131	(User parameter 11)					Y Y	Y	Y	Y	Y	
U132	(User parameter 12)					Y Y	Y	Y	Y	Y	
U133	(User parameter 13)					Y	Y	Y	Y	Y	
U134	(User parameter 14)					Y Y	Y	Y	Y	Y	
U135	(User parameter 15)					Y	Y	Y	Y	Y	
U136	(User parameter 16)					Y Y	Y	Y	Y	Y	
U137	(User parameter 17)					Y	Y	Y	Y	Y	
U138	(User parameter 18)					Y	Y	Y	Y	Y	
U139	(User parameter 19)					Y Y	Y	Y	Y	Y	
U140	(User parameter 20)					Y	Y	Y	Y	Y	
U171	Customizable logic(Storage area 1)(Storage area 2)(Storage area 3)(Storage area 4)(Storage area 5)	-9990.00 to 0.00 to 9990.00	Y	Y	0.00	Y	Y	Y	Y	Y	
U172						Y	Y	Y	Y	Y	
U173						Y	Y	Y	Y	Y	
U174						Y Y	Y	Y	Y	Y	
U175						Y	Y	Y	Y	Y	
U190	Customizable logic setting step (Step number)	1 to 200	Y	Y	15	Y	Y	Y	Y	Y	
U191	Setting step (Select block) (Input 1) 2) (Function 1) (Function 2)	Same as U01	N	Y	0	Y	Y	Y	Y	Y	
U192		Same as U02	N	Y	100	Y	Y	Y	Y	Y	
U193		Same as U03	N	Y	100	Y	Y	Y	Y	Y	
U194		Same as U04	N	Y	0.00	Y	Y	Y	Y	Y	
U195		Same as U05	N	Y	0.00	Y	Y	Y	Y	Y	
U196	Customizable logic ROM version Upper digit (Monitor)	0 to 9999	N	N	0	Y	Y	Y	Y	Y	
U197	Customizable logic ROM version Upper digit (For User setting)	0 to 9999	N	Y	0	Y	Y	Y	Y	Y	
U198	Customizable logic ROM version Lower digit (Monitor)	0 to 9999	N	N	0	Y	Y	Y	Y	Y	
U199	Customizable logic ROM version Lower digit (For User setting)	0 to 9999	N	Y	0	Y	Y	Y	Y	Y	

y codes: LINK Functions (Link function)

	Name	Data setting range			$\begin{aligned} & \text { 을 } \\ & \text { 이 } \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	Factory Default	Drive control						
Code				$\stackrel{*}{>}$			\pm 0 0	O		\sum_{0}			
*y21	Built-in CAN communication (Node ID) (Baud rate)	1 to 127			N	Y	1	Y	Y	Y	Y	Y	5-279
*y24		0: 125 kbps 1: 20kbit/s 2: 50kbit/s 3: $125 \mathrm{kbit} / \mathrm{s}$ 4: 250kbit/s 5: 500kbit/s 6: 800kbit/s 7: 1 Mbit/s		N	Y	0	Y	Y	Y	Y	Y		
*y25	Map the inverter function code1 to RPDO No. 3	0000 to FFFF (in hexadecimal)		N	Y	0000	Y	Y	Y	Y	Y		
*y26	Map the inverter function code2 to RPDO No. 3	Data mapped I/O (Write)					Y	Y	Y	Y	Y		
*y27	Map the inverter function code3 to RPDO No. 3			Y			Y	Y	Y	Y			
*y28	Map the inverter function code4 to RPDO No. 3			Y			Y	Y	Y	Y			
*y29	Map the inverter function code1 to TPDO No. 3			Y			Y	Y	Y	Y			
*y30	Map the inverter function code2 to TPDO No. 3			Y			Y	Y	Y	Y			
*y31	Map the inverter function code3 to TPDO No. 3			Y			Y	Y	Y	Y			
*y32	Map the inverter function code4 to TPDO No. 3			Y			Y	Y	Y	Y			
*y33	(Operation selection)	0: Disable, 1 : Enable			Y	Y	0	Y	Y	Y	Y	Y	
*y34	(Communications error processing)	This function code is valid in case of $\mathrm{y} 36=-4$ or -5 . 1: After the time specified by [y35], coast to a stop and trip with [ert]. 2. If the inverter receives any data within the time specified by [y35], ignore the communications error. After the timeout, coast to a stop and trip with [ert]. 10: Immediately decelerate to a stop. Issue [ert] after stopping. 11: After the time specified by [y35], decelerate to a stop. Issue [ert] after stopping. 12: If the inverter receives any data within the time specified by [y35], ignore the communications error. After the timeout, decelerate to a stop and trip with [ert]. Otherwise: Immediately coast to a stop and trip with [ert].			Y	Y	0	Y	Y	Y	Y	Y	
*y35	(Communication time-out detection timer)	0.0 to 60.0			Y	Y	0.0	Y	Y	Y	Y	Y	
*y36	(Operation selection in abort status) *5	-5 to 3			Y	Y	1	Y	Y	Y	Y	Y	
*y95	Data clear processing for communications error	0: Do not clear the data of function codes Sxx when a communications error occurs. (compatible with the conventional inverters) 1: Clear the data of function codes $\mathrm{S} 01 / \mathrm{S} 05 / \mathrm{S} 19$ when a communications error occurs. 2: Clear the run command assigned bit of function code S06 when a communications error occurs. 3: Clear both data of S01/S05/S19 and run command assigned bit of S 06 when a communications error occurs. 			Y	Y	0	Y	Y	Y	Y	Y	5-279
*y97	Communication data storage selection	0: Store into nonvolatile memory (Rewritable times are limited) 1: Write into temporary memory (Rewritable times are unlimited) 2: Save all data from temporary memory to nonvolatile memory (After all save, return to Data 1)			Y	Y	0	Y	Y	Y	Y	Y	5-279
*y98	Bus link function (Mode selection)	Frequency command 0: Follow H30 1: Bus link 2: Follow H30 3: Bus link	Run command Follow H30 Follow H3O Bus link Bus link	Y	Y	0	Y	Y	Y	Y	Y	5-279	
*y99	Loader link function (Mode selection)	Frequency command 0: Follow H30, y98 1: Doesa loader 2: Follow H30, y98 3: Doesa loader	Run command Follow H30, y98 Follow H30, y98 Doesa loader Doesa loader	Y	N	0	Y	Y	Y	Y	Y	5-280	

*5: Available at ROM version 0300 or later.
*: y21 to y99 cannot be used because VF1A does not support CAN communication.

■ *K codes: Keypad functions

Code	Name	Data setting range	бu!̣иииц иәчм әбиечэ		Factory Default	Drive control					
						$\stackrel{4}{>}$		-		\sum_{2}	
*K01	Multifunction keypad (Language selection)	0: Japanese 1: English 2: German 3: French 4: Spanish 5: Italian 6: Chinese 8: Russian 9: Greek 10: Turkish 11: Polish 12: Czech 13: Swedish 14: Portuguese 15: Dutch 16: Malay 17: Vietnamese 18: Thai 19: Indonesian 100: User-Customizable language	Y	Y	1	Y	Y	Y	Y	Y	-
*K02	(Backlight OFF time)	0 : Always OFF 1 to 30 min	Y	Y	5	Y	Y	Y	Y	Y	-
*K03	(Backlight brightness adjustment)	0 (dark) - 10 (bright)	Y	Y	5	Y	Y	Y	Y	Y	-
*K04	(Contrast adjustment)(LCD monitor status display)	0 (low) - 10 (high)	Y	Y	5	Y	Y	Y	Y	Y	-
*K08		0: Not displayed 1: Fully displayed	Y	Y	1	Y	Y	Y	Y	Y	-
*K15	(Sub-monitor display selection)	0 : Operation guide display 1: Bar graph display	Y	Y	0	Y	Y	Y	Y	Y	-
*K16	(Sub-monitor 1 display selection)	1 to 35 1: Output frequency 1 (before slip compensation)	Y	Y	13	Y	Y	Y	Y	Y	-
*K17	(Sub-monitor 2 display selection)	```Output frequency 2 (after slip compensation) Reference frequency Motor rotation speed Load rotation speed Line speed Transport time for specified length Speed (\%) : Output current 14: Output voltage 18: Calculated torque Input power Load factor Motor output Analog input monitor 31: Current position pulse 32: Position error pulse 33: Torque current (\%) 34: Magnetic flux command (\%) 35: Input watt-hour```	Y	Y	19	Y	Y	Y	Y	Y	-
*K20	(Bar graph 1 display selection)	1: Output frequency 1 (before slip compensation) 13: Output current 14: Output voltage 18: Calculated torque	Y	Y	1	Y	Y	Y	Y	Y	-
*K21	(Bar graph 2 display selection) (Bar graph 3 display selection)		Y	Y	13	Y	Y	Y	Y	Y	-
*K22		19: Input power 25: Load factor 26: Motor output	Y	Y	19	Y	Y	Y	Y	Y	-
*K91	(< key shortcut selection) (> key shortcut selection)	0: disabled	Y	Y	0	Y	Y	Y	Y	Y	-
*K92		11 to 99: respective mode	Y	Y	64	Y	Y	Y	Y	Y	-

*: K01 to K92 cannot be used because VF1A does not support multifunction Keypad.

5.2.3 Factory default value per applicable electric motor capacitance

Applicable electric motor capacity		Torque boost 1 to 2F09/ A05	Restart mode after momentary power failure (Restart timer) H13
kW	HP		
0.1	1/8	6.7	
0.2	1/4	4.0	
0.4	1/2	3.5	
0.75	1	6.5	
1.5	2	4.9	0.5
2.2	3	4.5	
3.7	5	4.1	
5.5	7.5	3.4	
7.5	10	2.7	
11	15	2.1	
15	20	1.6	
18.5	25	1.3	
22	30	1.1	
30	40		
37	50	0.0	
45	60		
55	75		1.5
75	100		

Chapter 6 TROUBLESHOOTING

6.1 Protective Function

In order to prevent system down or to shorten a downtime, VF1A is provided with various protective functions shown in Table 6.1-1 below. The protective functions marked with an asterisk (${ }^{*}$) in the table are disabled by factory default. Enable them according to your needs.
The protective functions include, for example, the "heavy alarm" detection function which, upon detection of an abnormal state, displays the alarm code on the LED monitor and causes the inverter to trip, the "light alarm" detection function which displays the alarm code but lets the inverter continue the current operation, and other warning signal output functions.
If any problem arises, understand the protective functions listed below and follow the procedures given in Sections 6.2 and onwards for troubleshooting.

Table 6.1-1 Abnormal States Detectable ("Heavy Alarm" and "Light Alarm" Objects)

Protective function	Description	Related function code
"Heavy alarm" detection	This function detects an abnormal state, displays the corresponding alarm code, and causes the inverter to trip. See "Table 6.3-1 Various failure detections (Heavy failure objects)" for alarm codes. For details of each alarm code, see the corresponding item in the troubleshooting in the Doesa VF1A series User's Manual, Section 6.3. The inverter retains the last four alarm codes and their factors together with their running information applied when the alarm occurred, so it can display them.	H98
"Light alarm" detection*	This function detects an abnormal state categorized as a "light alarm," displays $L_{-1, I \prime \prime}^{\prime \prime}$ and lets the inverter continue the current operation without tripping. Details of light alarms are selectable. Selectable details (codes) are shown in "Table 6.3-1 Various failure detections (Heavy failure objects)." See the Doesa VF1A series User's Manual, Section 6.4 for the confirming method and releasing method of the light alarms.	$\begin{aligned} & \mathrm{H} 81 \\ & \mathrm{H} 82 \end{aligned}$
Stall prevention	When the output current exceeds the current limiter level (F44) during acceleration/ deceleration or constant speed running, this function decreases the output frequency to avoid an overcurrent trip.	F44
Overload prevention control*	overload ((i"'L'í'), this function decreases the output frequency of the inverter to reduce the load.	H70
Anti-regenerative control*	If regenerative energy returned exceeds the inverter's braking capability, this function automatically increases the deceleration time or controls the output frequency to avoid an overvoltage trip.	H69
Deceleration characteristics* (Improvement of braking performance)	During deceleration, this function increases the motor energy loss and decreases the regenerative energy returned to avoid an overvoltage trip ((i/í').	H71
Reference loss detection*	This function detects a frequency reference loss (due to a broken wire, etc.), issues the alarm, and continues the inverter operation at the specified frequency.	E65
Automatic lowering of carrier frequency	Before the inverter trips due to an abnormal surrounding temperature or output current, this function automatically lowers the carrier frequency to avoid a trip.	H98
Motor overload early warning*	When the inverter output current has exceeded the specified level, this function issues the "Motor overload early warning" signal before the thermal overload protection function causes the inverter to trip for motor protection (Only for the 1st motor).	$\begin{aligned} & \text { E34 } \\ & \text { E35 } \end{aligned}$
Retry*	When the inverter has stopped because of a trip, this function allows the inverter to automatically reset and restart itself. The number of retries and the latency between stop and reset can be specified.	$\begin{aligned} & \mathrm{H} 04 \\ & \mathrm{H} 05 \end{aligned}$
Forced stop*	Upon receipt of the "Force to stop" terminal command STOP, this function interrupts the run and other commands currently applied in order to forcedly decelerate the inverter to a stop state.	H56
Surge protection	This function protects the inverter from a surge voltage between main circuit power lines and the ground.	-
Momentary power failure protection*	- If a momentary power failure for 15 ms or longer occurs, a protective operation (inverter stop) is activated. - When momentary power failure restart is selected, the inverter restarts automatically after voltage restoration within a set-up time (momentary power failure permissible time).	F14

6.2 Before Proceeding with Troubleshooting

\triangle WARNING

- If any of the protective functions has been activated, first remove the cause. Then, after checking that all run commands are set to OFF, release the alarm. If the alarm is released while any run command is set to ON, the inverter may supply the power to the motor, running the motor.

Injury may occur.

- Even though the inverter has interrupted power to the motor, if the voltage is applied to the main circuit input terminals $\mathrm{L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}, \mathrm{L} 1 / \mathrm{L}$ and $\mathrm{L} 2 / \mathrm{N}$, voltage may be output to inverter output terminals U, V, and W .
- Turn OFF the power and wait for at least five minutes for inverters with a capacity of VF1A-G72A0S4 or below, or at least ten minutes for inverters with a capacity of VF1A-G85A0S4 or above. Make sure that the LED monitor or charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC intermediate circuit voltage between the terminals $P(+)$ and $N(-)$ has dropped to the safe level $(+25$ VDC or below).
Electric shock may occur.

Follow the procedure below to solve problems.
As for Section 6.4 and later referenced below, please refer to Chapter 6 "TROUBLESHOOTING" of the Doesa VF1A series User's Manual.
(1) Is wire connection correct?

See Chapter 2 "2.2.1 Basic connection diagram."
(2) Check whether an alarm code or the "light alarm" indication ($\left.L_{-}^{\prime}-T_{l}^{\prime \prime \prime}\right)$ is displayed on the LED monitor.

- If an Alarm Code Appears on the LED Monitor

To Section 6.3

- If the "Light Alarm" Indication (1, - $-F_{L}^{\prime \prime \prime}$) Appears on the LED Monitor To Section 6.4
- When Codes Other Than Alarm Codes and Light Alarm Indication ($\dot{\prime}$ - $-F_{1 \prime \prime}^{\prime \prime}$) are To Section 6.5 Displayed

To Section 6.5.1

Abnormal motor operation

6.5.1 [1] The motor does not rotate
6.5.1 [2] The motor rotates, but the speed does not increase
6.5.1 [3] The motor runs in the opposite direction to the command
6.5.1 [4] Speed fluctuation or current oscillation (e.g., hunting) occurs during running at constant speed
6.5.1 [5] Unpleasant noises are emitted from motor or noises fluctuate
6.5.1 [6] Motor is not accelerated or decelerated according to set-up acceleration or deceleration times
6.5.1 [7] The motor does not restart even after the power recovers from a momentary power failure
6.5.1 [8] Motor generates heat abnormally
6.5.1 [9] The motor does not run as expected
6.5.1 [10] Motor stalls during acceleration

Problems with inverter settings
To Section 6.5.2
6.5.2 [1] Nothing appears on the LED monitor
6.5.2 [2] The desired menu is not displayed
6.5.2 [3] Display of under bars (_ - _ -)
6.5.2 [4] Display of center bars (----)
6.5.2[5] , \mathbf{L}^{-}Display of parenthesis
6.5.2 [6] Data of function codes cannot be changed

If any problems persist after the above recovery procedure, contact your IDEC representative.

6．3 If an Alarm Code Appears on the LED Monitor

6．3．1 Alarm code list

When an alarm is detected，check the alarm code displayed on 7 －segment LED of keypad．
When one alarm code has more than one cause，alarm subcodes are provided to make it easy to identify the cause． When there is only one cause，the alarm subcode is displayed as＂－＂and described as＂－．＂
＊See the Doesa VF1A series User＇s Manual，Chapter 3 ＂3．4．6 Reading alarm information＂for the method of checking the alarm codes．
＊With regard to alarm details having alarm subcodes name＂For manufacturer＂，inform the alarm subcodes，too， when contacting IDEC or requesting an inverter repair．

Table 6．3－1 Various failure detections（Heavy failure objects）

Alarm code	Alarm code name	Heavy failure object	Light alarm selectable	Retry object	Alarm subcode＊	Alarm subcode name	Reference page
（1）	PID feedback wire break	Y	Y	－	－	－	6－6
ロイバリ	Braking transistor broken	Y	－	－	－	－	6－6
ロール゙い	Braking resistor overheat （VF1A－G72A0S4 or below）	Y	Y	Y	0	DB resistor overheat	6－6
					1	For manufacturer	
EI＝	EN circuit failure	Y	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	10	ASIC alarm for functional safety	6－7
					3000	Erroneous detection of STO input	
					Other than above	For manufacturer	
E！	Customizable logic failure	Y	－	－	－	－	6－7
El－	Ground fault （VF1A－G85A0S4 or above）	Y	－	－	－	－	6－7
E－	Memory error	Y	－	－	1 to 16	For manufacturer	6－7
Eーで	Keypad communications error	Y	－	－	1 to 2	For manufacturer	6－8
E－J	CPU error	Y	－	－	1 to 9000	For manufacturer	6－8
Eーム＇	Option communications error	Y	Y	－	1	For manufacturer	6－8
にーム	Option error	Y	Y	－	0	Time－out	6－8
					1 to 10	For manufacturer	
EーG	Operation error	Y	－	－	1	STOP key priority／forced stop （STOP terminal）	6－9
					2	Start check function	
					3	Start check function （when operation is permitted）	
					4	Start check function （when reset is turned on）	
					5	Start check function （when the power recovers in powering on）	
					6	Start check function （TP connection）	
					8 to 14	For manufacturer	

See page shows the page of the Doesa VF1A series user＇s manual．

Continuation of Table 6．3－1

Alarm code	Alarm code name	Heavy failure object	Light alarm selectable	Retry object	Alarm subcode＊	Alarm subcode name	Reference page
E－7	Tuning error	Y	－	－	7	Operation command OFF during motor tuning	6－9
					8	Forced stop during motor tuning	
					9	BX command during motor tuning	
					10	Hardware current limit during motor tuning	
					11	Occurrence of low voltage（LV） during motor tuning	
					12	Failure due to prevention of reverse rotation during motor tuning	
					13	Over upper limit frequency during motor tuning	
					14	Switching to commercial power during motor tuning	
					15	Occurrence of alarm during motor tuning	
					16	Change of run command source during motor tuning	
					18	Over acceleration time during motor tuning	
					24	EN terminal failure during motor tuning	
					5000 to 5065	Refer to Chapter 4 ＂4．8．2 Alarm Information＂	
					Other than above	For manufacturer	
E－G	RS－485 communications error（Communication port 1）	Y	Y	－	－	－	6－10
Eーロ！	Step－out detection	Y	－	－	5001 to 5008	For manufacturer	6－11
EーE	Speed inconsistency／ excessive speed deviation	Y	Y	－	1	Signs of speed command and speed detection are inconsistent．	6－12
					3	In the case of excessive speed deviation（｜detected speed｜＞｜speed command｜）	
					5	Detected speed remains 0 Hz irrespective of speed command．	
					7	In the case of excessive speed deviation（｜detected speed｜＜｜speed command｜）	
E－İ	Data saving error during undervoltage	Y	－	－	－	－	6－13
Eーイ゙	Hardware error	Y	－	－	－	－	6－13
にーロ	Positioning control error	Y	Y	－	1 to 5	For manufacturer	6－13
E－IC	RS－485 communications error（Communication port 2）	Y	Y	－	－	－	6－10
Eー，	Simulated failure	Y	－	－	－	－	6－14
Er－	CAN communications failure	Y	－	－	1 to 2	For manufacturer	6－14
にしら	DC fuse－blowing	Y	－	－	－	－	6－14
111	Input phase loss	Y	－	－	1－2	For manufacturer	6－15
Lí＇	Undervoltage	Y	－	－	1	Occurrence of low voltage during gate ON（F14＝0）	6－15
					2	Run command ON during low voltage（F14＝0，2）	
					3	LV trip on power recovery from a momentary power failure（F14＝1）	
					4 to 5	For manufacturer	

[^4]
Continuation of Table 6．3－1

Alarm code	Alarm code name	Heavy failure object	Light alarm selectable	Retry object	Alarm subcode＊	Alarm subcode name	Reference page
バ11	Instantaneous overcurrent	Y	－	Y	1 to 5001	For manufacturer	6－16
バイーシ							
バ11－							
バ11゙イ！	Cooling fin overheat	Y	Y	Y	6	Detection of fan stop	6－16
					Other than above	For manufacturer	
ハイ11バニ	External alarm	Y	Y	－	－	－	6－17
ட゙ルイブご	Inverter internal overheat	Y	Y	Y	0	Internal air overheat	6－17
					1	Charging resistor overheat	
					Other than above	For manufacturer	
ハイ11゙イー！	Motor protection（PTC thermistor）	Y	－	Y	－	－	6－18
ハイ111゙イ	Charging resistor overheat	Y	Y	Y	－	－	6－18
ו゙II ！	Motor 1 overload	Y	Y	Y	－	－	6－19
バルニ゙	Motor 2 overload	Y	Y	Y	－	－	
ぐでじ	Inverter overload	Y	－	Y	1	IGBT protection	6－20
					2	Inverter overload	
					10	For manufacturer	
	Output phase－failure detection	Y	－	－	1 to 10	For manufacturer	6－20
年搝年	Overspeed protection	Y	－	－	－	－	6－21
バ1゙1！	Overvoltage	Y	－	Y	1 to 12	For manufacturer	6－21
バイルー「							
ட゙ル！							
団行	PG wire break	Y	－	－	10 to 20	For manufacturer	6－22
	Inverter life（Number of startups）	－	Y	－	－	－	
ハイバ1	Detect DC fan lock	－	Y	－	－	－	
11^{\prime}	Lifetime alarm	－	Y	－	－	－	
！イ11\％	Cooling fin overheat early warning	－	Y	－	－	－	
1711	Overload early warning	－	Y	－	－	－	
隹バ	PID alarm output	－	Y	－	－	－	6－23
バーブー	PTC thermistor activated	－	Y	－	－	－	
に，	Reference command loss detected	－	Y	－	－	－	
ハ！゙ー	Machine life（Cumulative motor running hours）	－	Y	－	－	－	
じIIし	Low torque detection	－	Y	－	－	－	

NB）－If a control power supply voltage drops to such a level that the operation of the inverter control circuit cannot be maintained，all protective functions are automatically reset．
－By OFF \rightarrow ON operation of $\frac{\text { prgs }}{\text { past }}$ key or X terminal（assigned to RST）the protection stop state can be released．In a state that an alarm cause is not removed，however，resetting operation is not effective．
－If two or more alarms are occurring，the resetting operation remains ineffective until all the alarm causes are removed．Alarm factors not removed can be checked from the keypad．
－When assigned to light alarms，＂30A／B／C＂do not work．
See page shows the page of the Doesa VF1A series user＇s manual．

Chapter 7 MAINTENANCE AND INSPECTION

Perform daily and periodic inspections to avoid trouble and keep reliable operation of the inverter for a long time. When performing inspections, follow the instructions given in this chapter.

\triangle WARNING \triangle

- Before proceeding to the maintenance/inspection jobs, turn OFF the power and wait at least five minutes for inverters VF1A-G72A0S4 or below, or at least ten minutes for inverters VF1A-G85A0S4 or above. Make sure that the LED monitor / charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ has dropped to the safe level (+25 VDC or below).

Electric shock may occur.

- Maintenance, inspection, and parts replacement should be made only by authorized persons.
- Take off the watch, rings and other metallic objects before starting work.
- Use insulated tools.
- Never modify the inverter.

Electric shock or injuries could occur.

7.1 Inspection Interval

Table 7.1-1 lists the inspection intervals and check items, as a guide.
Table 7.1-1 List of Inspections

Inspection type	Inspection interval	Check items
Daily inspection	Every day	See Section 7.2 .
Periodic inspection	Every year	See Section 7.3 .
Decennial inspection *1	Every 10 years *2	Replacement of cooling fans *3 Replacement of DC link bus capacitors and close checks

*1 The decennial inspection (except replacement of cooling fans) should be performed only by the persons who have finished the IDEC training course. Contact the sales agent where you purchased the product or your nearest IDEC representative.
*2 Every 7 years for ND-mode inverters.
*3 For the standard replacement interval of cooling fans, refer to "7.4 List of Periodic Replacement Parts."

Note
The replacement intervals are based on the inverter's service life estimated at an ambient temperature of $40^{\circ} \mathrm{C}$ at 100% (HHD-mode inverters) or 80% (ND-/HD-/HND-mode inverters) of full load. In environments with an ambient temperature above $40^{\circ} \mathrm{C}$ or a large amount of dust or dirt, the replacement intervals may be shorter.

Standard replacement intervals mentioned above are only a guide for replacement, not a guaranteed service life. Refer to "7.4 List of Periodic Replacement Parts."

7.2 Daily Inspection

Visually inspect the inverter for operation errors from the outside without removing the covers when the inverter is running or the power is ON.

Table 7.2-1 lists daily inspection items.
Table 7.2-1 Daily Inspection List

Check part	Check item	How to inspect	Evaluation criteria
Environment	1) Check the surrounding temperature, humidity, vibration and atmosphere (dust, gas, oil mist, or water drops). 2) Check that tools or other foreign materials or dangerous objects are not left around the equipment.	1) Check visually or measure using apparatus. 2) Visual inspection	1) The usage environment given in Chapter 1, Section 1.3.1 must be satisfied. 2) No foreign or dangerous objects are left.
External appearance and others	1) Check that the bolts securing the wires to the main circuit terminals and control circuit terminals are not loose before turning the power ON. 2) Check for traces of overheat, discoloration and other defects. 3) Check for abnormal noise, odor, or excessive vibration.	1) Retighten before turning the power ON. 2) Visual inspection 3) Auditory, visual, and olfactory inspection	1) No loose screws. If loose, retighten the screws. 2), 3) No abnormalities
Cooling fans	Check for abnormal noise or excessive vibration when the cooling fans are in operation.	Auditory and visual inspections	No abnormalities
Keypad	Check for alarm indication.	Visual inspection	If any alarm is displayed, refer to Chapter 6.
Performance	Check that the inverter provides the expected performance (as defined in the standard specifications).	Check the monitor items shown on the keypad.	No abnormalities in the output speed, current and voltage and other running data.

7.3 Periodic Inspection

7.3.1 Periodic inspection 1-Before the inverter is powered ON or after it stops running

Perform periodic inspections according to the items listed in Table 7.3-1. Before performing periodic inspection 1, shut down the power and then remove the front cover.

Even if the power has been shut down, it takes the time for the DC link bus capacitor to discharge. After the charging lamp is turned OFF, therefore, make sure that the DC link bus voltage has dropped to the safe level (+25 VDC or below) using a multimeter or a similar instrument.

Table 7.3-1 Periodic Inspection List 1

	Check part	Check item	How to inspect	Evaluation criteria
Structure such as frame and cover		Check for: 1) Loose bolts (at clamp sections). 2) Deformation and breakage 3) Discoloration caused by overheat 4) Contamination and accumulation of dust or dirt	1) Retighten. 2), 3), 4) Visual inspection	1), 2), 3), 4) No abnormalities (If any section is stained, clean it with a soft cloth.)
	Common	1) Check that bolts and screws are tight and not missing. 2) Check the devices and insulators for deformation, cracks, breakage and discoloration caused by overheat or deterioration. 3) Check for contamination or accumulation of dust or dirt.	1) Retighten. 2), 3) Visual inspection	1), 2), 3) No abnormalities (If any section is stained, clean it with a soft cloth.)
	Conductors and wires	1) Check conductors for discoloration and distortion caused by overheat. 2) Check the sheath of the wires for cracks and discoloration.	1), 2) Visual inspection	1), 2) No abnormalities
	Terminal blocks	Check that the terminal blocks are not damaged.	Visual inspection	No abnormalities
	DC link bus capacitor	1) Check for electrolyte leakage, discoloration, cracks and swelling of the casing. 2) Check that the safety valve does not protrude remarkably.	1), 2) Visual inspection	1), 2) No abnormalities
	Braking resistor	1) Check for abnormal odor or cracks in insulators caused by overheat. 2) Check for wire breakage.	1) Olfactory and visual inspection 2) Check the wires visually, or disconnect either one of the wires and measure the conductivity with a multimeter.	1) No abnormalities 2) Within $\pm 10 \%$ of the resistance of the braking resistor
	Printed circuit board	1) Check for loose screws and connectors. 2) Check for odor and discoloration. 3) Check for cracks, breakage, deformation and remarkable rust. 4) Check the capacitors for electrolyte leaks and deformation.	1) Retighten. 2) Olfactory and visual inspection 3), 4) Visual inspection Judgment on service life using "Menu \#5 Maintenance Information" in the Doesa VF1A series User's Manual, Chapter 3, Section 3.4.5.	1), 2), 3), 4) No abnormalities
	Cooling fan	1) Check for engagement or abnormal vibration. 2) Check for loose bolts. 3) Check for discoloration caused by overheat.	1) Turn by hand. (Be sure to turn the power OFF beforehand.) 2) Retighten. 3) Visual inspection Judgment on service life using "Menu \#5 Maintenance Information" in the Doesa VF1A series User's Manual, Chapter 3, Section 3.4.5.	1) Smooth rotation 2), 3) No abnormalities
	Ventilation path	Check the heat sink, intake and exhaust ports for clogging and foreign materials.	Visual inspection	No clogging or accumulation of dust, dirt or foreign materials. Clean it, if any, with a vacuum cleaner.

7.3.2 Periodic inspection 2--When the inverter is ON or it is running

Visually inspect the inverter for operation errors from the outside without removing the covers when the inverter is ON or it is running.

Perform periodic inspections according to the items listed in Table 7.3-2
Table 7.3-2 Periodic Inspection List 2

	Check part	Check item	How to inspect	Evaluation criteria
	ut voltage	Check that the input voltages of the main and control circuits are correct.	Measure the input voltages using a multimeter or the like.	The standard specifications must be satisfied.
	ucture such as assis and ers	Check for abnormal noise or excessive vibration when the inverter is running.	Visual and auditory inspections	No abnormalities
	Transformers and reactors	Check for abnormal roaring noise or odor when the inverter is running.	Auditory, visual, and olfactory inspections	No abnormalities
0	Magnetic contactors and relays	Check for chatters when the inverter is running.	Auditory inspection	No abnormalities
-	DC link bus capacitor	Measure the capacitance if necessary.	Judgment on service life using "Menu \#5 Maintenance Doesa VF1A series User's Manual, Chapter 3, Section 3.4.5.	Capacitance \geq Initial value $\times 0.85$
Cooling fans		Check for abnormal noise or excessive vibration when the inverter is running.	Visual and auditory inspections	No abnormalities

Additional notes

(1) The inspection interval (every year) of check items given in Table 7.3-1 and Table 7.3-2 is merely a guide. Make the interval shorter depending on the usage environment.
(2) Store and organize the inspection results to utilize them as a guide for operation and maintenance of the equipment and service life estimation.
(3) At the time of an inspection, check the cumulative run times on the keypad to utilize them as a guide for replacement of parts. Refer to "7.4.1 Judgment on service life".
(4) The inverter has cooling fans inside to ventilate itself for discharging the heat generated by the power converter section. This will accumulate dust or dirt on the heat sink depending on the ambient environment. In a dusty environment, the heat sink requires cleaning in a shorter interval than that specified in periodic inspection. Neglecting cleaning of the heat sink can rise its temperature, activating protective circuits to lead to an abrupt shutdown or causing the temperature rise of the surrounding electronic devices to adversely affect their service life.

7.4 List of Periodic Replacement Parts

Each part of the inverter has its own service life that will vary according to the environmental and operating conditions. It is recommended that the following parts be replaced at the specified intervals.

When the replacement is necessary, consult your IDEC representative.
Table 7.4-1 Replacement Parts

Part name	Standard replacement intervals (See Note below.)						
DC link bus capacitor	10 years (7 years in the ND mode)						
Electrolytic capacitors on printed circuit boards	10 years (7 years in the ND mode)						
Cooling fans	10 years (7 years in the ND mode)						
Fuses	10 years (7 years in the ND mode)						

Note．These replacement intervals are based on the inverter＇s service life estimated at a surrounding temperature of $40^{\circ} \mathrm{C}$ at 100%（HHD－mode inverters）or 80%（ND－／HD－／HND－mode inverters）of full load．In environments with an ambient temperature above $40^{\circ} \mathrm{C}$ or a large amount of dust or dirt，the replacement intervals may be shorter．The condition for inverters of VF1A－G12A0S4 or below capacity models is a load ratio of 80% even for HHD－mode．

Notes for periodic replacement of parts

（1）The replacement intervals listed above are a guide for almost preventing parts from failure if those parts are replaced with new ones at the intervals．They do not guarantee the completely fault－free operation．
（2）Table 7．4－1 does not apply to unused spare parts being kept in storage．
It applies only when they are stored under the temporary and long－term storage conditions given in Chapter 1 ＂1．3．2 Storage environment＂and energized approximately once a year．
（3）Cooling fans can be replaced by users．As for other parts，only the persons who have finished the IDEC training course can replace them．For the purchase of spare cooling fans and the request for replacement of other parts，contact the sales agent where you purchased the product or your nearest IDEC representative．

7．4．1 Judgment on service life

The inverter has the life prediction function for some parts which measures the discharging time or counts the voltage applied time，etc．The function allows you to monitor the current lifetime state on the LED monitor and judge whether those parts are approaching the end of their service life．
The life prediction function can also issue early warning signals if the life time alarm command LIFE is assigned to any of the digital output terminals．Refer to the Doesa VF1A series User＇s Manual，Chapter 3 ＂3．4．5 Reading maintenance information＂Maintenance Information：S．
Table 7．4－2 lists the parts whose service life can be predicted and details the life prediction function．The predicted values should be used only as a guide since the actual service life is influenced by the ambient temperature and other usage environments．

Table 7．4－2 Life Prediction

Object of life prediction	Prediction function	End－of－life criteria	Prediction timing	＂ 5 ： MAINTENANCE＂ on the LED monitor
DC link bus capacitor	Measurement of discharging time Measures the discharging time of the DC link bus capacitor when the main power is shut down and calculates the capacitance．	85% or lower of the initial capacitance at shipment	At periodic inspection （H98：Bit $3=0$ ）	今ールバーシ （Capacity）
		85% or lower of the reference capacitance under ordinary operating conditions at the user site	During ordinary operation （H98：Bit $3=1$ ）	$\begin{aligned} & \text { K, } \\ & \text { (Capacity) } \end{aligned}$
	ON－time counting Counts the time elapsed when the voltage is applied to the DC link bus capacitor，while correcting it according to the capacitance measured above．	Exceeding 87，600 hours （10 years）	During ordinary operation	与ージロ （Elapsed time）与ュにフ （Time remaining before the end of life）
Electrolytic capacitors on printed circuit boards	Counts the time elapsed when the voltage is applied to the capacitors，while correcting it according to the surrounding temperature．	Exceeding 87，600 hours （10 years）	During ordinary operation	与＿115 （Cumulative run time）
Cooling fans	Counts the run time of the cooling fans．	Exceeding 87，600 hours （10 years）	During ordinary operation	5177 （Cumulative run time）

The service life of the DC link bus capacitor can be judged by the＂Measurement of discharging time of the DC link bus capacitor＂or＂ON－time counting of DC link bus capacitor．＂

Measurement of discharging time of the DC link bus capacitor

- The discharging time of the DC link bus capacitor depends largely on the inverter's internal load conditions, e.g. options attached or ON/OFF status of digital I/O signals. If actual load conditions are so different from the ones at which the initial/reference capacitance is measured that the measurement result falls out of the accuracy level required, then the inverter does not measure.
When the inverter is connected with a converter or with another inverter via DC common connection, it does not performs any measurement.
- The capacitance measuring conditions at shipment are drastically restricted, e.g., all input terminals being OFF in order to stabilize the load and measure the capacitance accurately. Those conditions are, therefore, different from the actual operating conditions in almost all cases. If the actual operating conditions are the same as those at shipment, shutting down the inverter power automatically measures the discharging time; however, if they are different, no automatic measurement is performed. To perform it, put those conditions back to the factory default ones and shut down the inverter. Refer to 7.4.1 [1] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment on page 7-6.
- To measure the capacitance of the DC link bus capacitor under ordinary operating conditions when the power is turned OFF, it is necessary to set up the load conditions for ordinary operation and measure the reference capacitance (initial setting) when the inverter is introduced. For the reference capacitance setup procedure, see [2] on page7-7 Performing the setup procedure automatically detects and saves the measuring conditions of the DC link bus capacitor.
Setting bit 3 of H 98 data at " 0 " restores the inverter to the measurement in comparison with the initial capacitance measured at shipment.

When the inverter uses an auxiliary control power input, the load conditions widely differ so that the discharging time cannot be accurately measured. In this case, measuring of the discharging time can be disabled with the function code H 98 (Bit $4=0$) for preventing unintended measuring.

ON-time counting of DC link bus capacitor

- In a machine system where the inverter main power is rarely shut down, the inverter does not measure the discharging time. For this case, the ON-time counting is provided. The ON-time counting result can be
 "DC link bus capacitor" section in Table 7.4-2.

[1] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment

The measuring procedure given below measures the capacitance of DC link bus capacitor in comparison with initial one at shipment when the power is turned OFF. The measuring result can be displayed on the keypad as a ratio (\%) to the initial capacitance.

Capacitance measuring procedure

1) To ensure validity in the comparative measurement, put the condition of the inverter back to the state at factory shipment.

- Remove the option card (if already in use) from the inverter.
- In case another inverter is connected via the DC link bus to the $P(+)$ and $N(-)$ terminals of the main circuit, disconnect the wires. It is not required to disconnect the DC reactor (optional), if any.
- Disconnect power wires for the auxiliary input to the control circuit (R0, TO).
- Mount the keypad.
- Turn OFF all the digital input signals fed to terminals [FWD], [REV], and [X1] through [X5] of the control circuit.
- If an external speed command potentiometer is connected to terminal [13], disconnect it.
- If an external apparatus is attached to terminal [PLC], disconnect it.
- Ensure that transistor outputs [Y1] and [Y2] and Relay output terminals [30A/B/C] will not be turned ON.
- Disable the RS-485 communications link.

Note If negative logic is specified for the transistor output and relay output signals, they are considered ON when the inverter is not running. Specify positive logic for them.
2) Turn ON the main circuit power.
3) Confirm that the DC cooling fan is rotating and the inverter is in stopped state. Disable the cooling fan ON/OFF control ($\mathrm{H} 06=0$).
4) Shut down the main circuit power.
5) The inverter automatically starts the measurement of the capacitance of the DC link bus capacitor.

If ". . . . " does not appear on the LED monitor, the measurement has not started. Check the conditions listed in 1).
6) After " . . . " has disappeared from the LED monitor, turn ON the main circuit power again.
7) Select Menu \#5 "Maintenance Information" in Programming mode and check the capacitance (\%) of the DC link

[2] Measuring the capacitance of the DC link bus capacitor under ordinary operating conditions

The inverter automatically measures the capacitance of the DC link bus capacitor under ordinary operating conditions when the power is turned OFF. This measurement requires setting up the load conditions for ordinary operation and measuring the reference capacitance when the inverter is introduced to the practical operation, using the setup procedure given below.

Reference capacitance setup procedure

1) Set bit 3 of function code H 98 at " 1 " (User mode) to enable the user to specify the judgment criteria for the service life of the DC link bus capacitor.
2) Turn OFF all run commands.
3) Make the inverter ready to be turned OFF under ordinary operating conditions.
4) Set each of function codes H42 (Capacitance of DC link bus capacitor) and H47 (Initial capacitance of DC link

5) Turn OFF the inverter, and the following operations are automatically performed.

The inverter measures the discharging time of the DC link bus capacitor and saves the result in function code H47 (Initial capacitance of DC link bus capacitor).
The conditions under which the measurement has been conducted will be automatically collected and saved.
6) Turn ON the inverter again.

Confirm that H47 (Initial capacitance of DC link bus capacitor) holds right values. Switch to Menu \#5 "Maintenance Information" in Programming mode and confirm that the main capacitor capacity is 100% (谷 = 100\%).
Note If the measurement has failed, " \sim 'nlin' $!$ " is entered into each of H 42 and H 47 . Remove the cause of the failure and conduct the measurement again.

Hereafter, each time the inverter is turned OFF, it automatically measures the discharging time of the DC link bus capacitor if the above conditions are met. Periodically check the capacitance (\%) of the DC link bus capacitor

Note The condition given above produces a rather large measurement error. If this mode gives you a lifetime alarm, revert bit 3 of H98 (Main circuit capacitor life judgment selection) to the default setting (Bit $3=0$) and conduct the measurement under the condition at the time of factory shipment.

[3] Early warning of lifetime alarm

For the components listed in Table 7.4-2, the inverter can issue an early warning of lifetime alarm LIFE at one of the transistor output terminals [Y1] and [Y2] and Relay output terminals [30A/B/C] as soon as any one of the levels specified in Table 7.4-2 has been exceeded.

7.5 Measurement of Electrical Amounts in Main Circuit

Because the voltage and current of the power supply (input, primary circuit) of the main circuit of the inverter and those of the motor (output, secondary circuit) contain harmonic components, the readings may vary with the type of the meter. Use meters indicated in Table 7.5-1 when measuring main circuit.
The power factor cannot be measured by a commercially available power-factor meter that measures the phase difference between the voltage and current. To obtain the power factor, measure the power, voltage and current on each of the input and output sides and use the following formula.

- Three-phase input

Power factor $=\frac{\text { Electric power }(\mathrm{W})}{\sqrt{3} \times \text { Voltage }(\mathrm{V}) \times \text { Current }(\mathrm{A})} \times 100 \%$

Table 7.5-1 Meters for Measurement of Main Circuit

$\stackrel{\text { ¢ }}{\underline{\text { ¢ }}}$	Input (primary) side			Output (secondary) side			DC link bus voltage ($\mathrm{P}(+)-\mathrm{N}(-))$
	Voltage Current			Voltage Current			—
+ ${ }_{\text {¢ }}^{\text {¢ }}$	Ammeter AR, AS, AT	Voltmeter VR, VS, VT	Wattmeter WR, WT	Ammeter AU, AV, AW	Voltmeter VU, VV, VW	Wattmeter WU, WW	DC voltmeter V
" ${ }_{\text {¢ }}^{\text {¢ }}$	Moving iron type	Rectifier or moving iron type	Digital AC power meter	Moving coil type			
	\$	小本	-	-	-	-	ค)

It is not recommended that meters other than a digital AC power meter be used for measuring the output voltage or output current since they may cause larger measurement errors or, in the worst case, they may be damaged.

Figure 7.5-1 Connection of Meters

7．6 Insulation Test

Since the inverter has undergone an insulation test before shipment，avoid making a Megger test at the customer＇s site．

If a Megger test is unavoidable for the main circuit，observe the following instructions；otherwise，the inverter may be damaged．

A withstand voltage test may also damage the inverter if the test procedure is wrong．When the withstand voltage test is necessary，consult your IDEC representative．

（1）Megger test of main circuit

1）Use a 500 VDC Megger and ensure that the main power has been shut off before measurement．
2）If the test voltage leaks to the control circuit due to the wiring，disconnect all the wiring from the control circuit．
3）Connect the main circuit terminals with a common line as shown in Figure 7．6－1．
4）The Megger test must be limited to across the common line of the main circuit and the ground（ (\ominus) ）．
5）Value of $5 \mathrm{M} \Omega$ or more displayed on the Megger indicates a correct state．（The value is measured on the inverter alone．）

Figure 7．6－1 Main Circuit Terminal Connection for Megger Test

（2）Insulation test of control circuit

Do not make a Megger test or withstand voltage test for the control circuit．Use a high resistance range tester for the control circuit．

1）Disconnect all the external wiring from the control circuit terminals．
2）Perform a continuity test to the ground．One $\mathrm{M} \Omega$ or a larger measurement indicates a correct state．

（3）Insulation test of external main circuit and sequence control circuit

Disconnect all the wiring connected to the inverter so that the test voltage is not applied to the inverter．

7．7 Inquiries about Product and Guarantee

7．7．1 When making an inquiry

Upon breakage of the product，uncertainties，failure or inquiries，inform your IDEC representative of the following information．
1）Inverter type．Refer to Chapter 1 ＂1．1 Acceptance Inspection（Nameplates and Inverter Type）＂．
2）SER No．（serial number of equipment）．Refer to Chapter 1 ＂1．1 Acceptance Inspection（Nameplates and Inverter Type）＂．
3）Function codes and their data that you changed．Refer to the Doesa VF1A series User＇s Manual，Chapter 3 ＂3．4．2 Checking changed function codes＂Data Checking：
4）ROM version．Refer to the maintenance item 今，I＇t in the Doesa VF1A series User＇s Manual，Chapter 3 ＂3．4．5 Reading maintenance information＂Maintenance Information：与．וィルー＂，
5）Date of purchase
6）Inquiries（for example，point and extent of breakage，uncertainties，failure phenomena，and other circumstances）

7.7.2 Product warranty

To all our customers who purchase IDEC products included in this documentation:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.

In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.
Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

[1] Free of charge warranty period and warranty range

(1) Free of charge warranty period

1) The product warranty period is " year from the date of purchase" or 18 months from the manufacturing date imprinted on the name place, whichever date is earlier.
2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
3) Furthermore, the warranty period for parts restored by IDEC's Service Department is " 6 months from the date that repairs are completed."

(2) Warranty range

1) In the event that breakdown occurs during the product's warranty period which is the responsibility of IDEC, IDEC will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.
(1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
(2) The breakdown was caused by the product other than the purchased or delivered IDEC's product.
(3) The breakdown was caused by the product other than IDEC's product, such as the customer's equipment or software design, etc.
(4) Concerning the IDEC's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
(5) The breakdown was caused by disassembly, modifications or repairs affected by a party other than IDEC.
(6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
(7) The breakdown was caused by a science or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
(8) The product was not used in the manner the product was originally intended to be used.
(9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

(3) Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.

[2] Exclusion of liability for loss of opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.

[3] Repair period after production stop, spare parts supply period (holding period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm at our company's business office or our service office.

[4] Transfer rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

[5] Service contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

[6] Applicable scope of service

Above contents shall be assumed to apply to transactions and use of the country where you purchased the products.
Consult the local supplier or IDEC for details separately.

APPENDICES

Appendix G Conformity with Standards

G. 1 Compliance with European Standards (C ϵ)

The CE marking on IDEC products indicates that they comply with the essential requirements of the Electromagnetic Compatibility (EMC) Directive 2014/30/EU, Low Voltage Directive 2014/35/EU, Machinery Directive 2006/42/EC and RoHS 2 Directive 2011/65/EU which are issued by the Council of the European Communities.

Table G-1 Conformity with Standards

	Standards	
EMC Directives	EN61800-3	$: 2004+$ A1:2012
	EN61800-3	$: 2018$
	EN12016	$: 2013$
	Immunity	Second environment (Industrial)
	Emission	$:$ Applicable only when an optional EMC-compliant filter is
attached : Category C2		

[1] Compliance with EMC standards

The CE marking on inverters does not ensure that the entire equipment including our CE-marked products is compliant with the EMC Directive. Therefore, CE marking for the equipment shall be the responsibility of the equipment manufacturer. For this reason, IDEC's CE mark is indicated under the condition that the product shall be used within equipment meeting all requirements for the relevant Directives. Instrumentation of such equipment shall be the responsibility of the equipment manufacturer.
Generally, machinery or equipment includes not only our products but other devices as well. Manufacturers, therefore, shall design the whole system to be compliant with the relevant Directives.

- List of EMC-compliant filters

To satisfy the requirements noted above, use the combination of the basic type of inverters that have no built-in EMC filter and an external EMC filter (option) dedicated to IDEC inverters. In either case, mount inverters in accordance with the installation procedure given below. To ensure the compliance, it is recommended to mount the inverters in a metal panel.

> Tip
> Our EMC compliance test is performed under the following conditions.
> Wiring length (of the shielded cable) between the inverter and motor: 10 m

To use IDEC inverters in combination with a PWM converter, the basic type of inverters having no built-in EMC filter should be used. Use of an external EMC filter (option) may increase heat of capacitors in the inverter, resulting in damage. In addition, the effect of the EMC filter can no longer be expected.

Table G-2 EMC-compliant filter

Power supply voltage Three-phase 400V	Inverter type	Specification	Filter type *2)
	VF1A-G02A1S4	ND/HD/HND/HHD	B84243A8017W221 *1)
	VF1A-G04A1S4	ND/HD/HND/HHD	B84243A8017W221 *1)
	VF1A-G05A5S4	ND/HD/HND/HHD	B84243A8017W221 *1)
	VF1A-G06A9S4	ND/HD/HND/HHD	B84243A8017W221 *1)
	VF1A-G12A0S4	ND/HD/HND/HHD	B84243A8017W221 *1)
		ND	FS21312-44-07
	VF1A-G21A5S4	HD/HND	FS21559-24-07-01
		HHD	FS21559-24-07-01
		ND	FS21312-44-07
	VF1A-G28A5S4	HD/HND	FS21312-44-07
		HHD	FS21559-24-07-01
		ND	FS5536-72-07 (EFL-22G11-4)
	VF1A-G37A0S4	HD/HND	FS21312-44-07
		HHD	FS21312-44-07
		ND	FS5536-72-07 (EFL-22G11-4)
	VF1A-G44A0S4	HD/HND	FS5536-72-07 (EFL-22G11-4)
		HHD	FS21312-44-07
		ND	FS21312-78-07
	VF1A-G59A0S4	HD/HND	FS5536-72-07 (EFL-22G11-4)
		HHD	FS5536-72-07 (EFL-22G11-4)
		ND	-
	VF1A-G72A0S4	HD/HND	FS21312-78-07
		HHD	FS5536-72-07 (EFL-22G11-4)
		ND	FS5536-180-40
	VF1A-G85A0S4	HD/HND	FS5536-100-35
		HHD	FS5536-100-35
		ND	FS5536-180-40
	VF1A-G105AS4	HD/HND	FS5536-180-40
		HHD	FS5536-100-35
	VF1A-G139AS4	ND/HD/HND/HHD	FS5536-180-40

*1) A ferrite core is added for input power wires and grounding wire (2 turns), or two ferrite cores are added for input power wires and grounding wire, 1 turns.
*2) Regarding recommended EMC-compliant filters, please contact the sales agent where you purchased the product or your nearest IDEC representative.

Recommended installation procedure

To make the machinery or equipment fully compliant with the EMC Directive, certified technicians should wire the motor and inverter in strict accordance with the procedure described below.

In case an external EMC-compliant filter (option) is used

(1) Mount the inverter and the filter on a grounded panel or metal plate. Use shielded wires for the motor cable and route the cable as short as possible. Firmly clamp the shields to the metal plate to ground them. Further, connect the shielding layers electrically to the grounding terminal of the motor.
(2) For connection to inverter's control terminals and for connection of the RS-485 communication signal cable, use shielded wires. As with the motor connections, clamp the shields firmly to a grounded panel.
(3) If noise from the inverter exceeds the permissible level, enclose the inverter and its peripherals within a metal panel as shown in Figure G-1.

Figure G-1 Mounting an EMC-compliant Filter (option) in a Metal Panel

[2] Compliance with the low voltage directive in the EU

General-purpose inverters are regulated by the Low Voltage Directive in the EU. IDEC states that all our inverters with CE marking are compliant with the Low Voltage Directive.

- Note

If installed according to the guidelines given below, inverters marked with CE are considered as compliant with the Low Voltage Directive 2014/35/EU.

Compliance with European Standards

Adjustable speed electrical power drive systems.
Part 5-1: Safety requirements. Electrical, thermal and energy. IEC/EN61800-5-1 : 2007

$\triangle \triangle$ WARNING

1. The ground terminal © should always be connected to the ground. Do not use only a residual-currentoperated protective device (RCD)/earth leakage circuit breaker (ELCB)* as the sole method of electric shock protection. Be sure to use ground wires whose size is greater than power supply lines.
*With overcurrent protection.
2. To prevent the risk of hazardous accidents that could be caused by damage of the inverter, install the specified fuses in the supply side (primary side) according to the following tables.

- Breaking capacity: Min. 10 kA - Rated voltage: Min. 500 V

Power supply voltage	Nominal applied motor (kW)	Inverter type	HHD/HND/HD/ ND mode	Fuse rating (A)
Three phase 400V	0.4	VF1A-G02A1S4	HHD	3(IEC60269-2)
	0.75		HND/HD	6(IEC60269-2)
	0.75		ND	6(IEC60269-2)
	0.75	VF1A-G04A1S4	HHD	6(IEC60269-2)
	1.1		HND/HD	10(IEC60269-2)
	1.5		ND	10(IEC60269-2)
	1.5	VF1A-G05A5S4	HHD	10(IEC60269-2)
	2.2		HND/HD	15(IEC60269-2)
	2.2		ND	15(IEC60269-2)
	2.2	VF1A-G06A9S4	HHD	15(IEC60269-2)
	3.0		HND/HD	20(IEC60269-2)
	3.0		ND	20(IEC60269-2)
	3.7	VF1A-G12A0S4	HHD	20(IEC60269-2)
	5.5		HND/HD	30(IEC60269-2)
	5.5		ND	30(IEC60269-2)
	5.5	VF1A-G21A5S4	HHD	80(IEC60269-4)
	7.5		HND/HD	80(IEC60269-4)
	11		ND	80(IEC60269-4)
	7.5	VF1A-G28A5S4	HHD	80(IEC60269-4)
	11		HND/HD	80(IEC60269-4)
	15		ND	125(IEC60269-4)
	11	VF1A-G37A0S4	HHD	125(IEC60269-4)
	15		HND/HD	125(IEC60269-4)
	18.5		ND	125(IEC60269-4)
	15	VF1A-G44A0S4	HHD	160(IEC60269-4)
	18.5		HND/HD	160(IEC60269-4)
	22		ND	160(IEC60269-4)
	18.5	VF1A-G59A0S4	HHD	160(IEC60269-4)
	22		HND/HD	160(IEC60269-4)
	30		ND	160(IEC60269-4)
	22	VF1A-G72A0S4	HHD	160(IEC60269-4)
	30		HND/HD	160(IEC60269-4)
	37		ND	160(IEC60269-4)
	30	VF1A-G85A0S4	HHD	250(IEC60269-4)
	37		HND/HD	250(IEC60269-4)
	45		ND	250(IEC60269-4)
	37	VF1A-G105AS4	HHD	315(IEC60269-4)
	45		HND/HD	315(IEC60269-4)
	55		ND	315(IEC60269-4)
	45	VF1A-G139AS4	HHD	315(IEC60269-4)
	55		HND/HD	315(IEC60269-4)
	75		ND	315(IEC60269-4)

Compliance with the low voltage directive in the EU (Continued)

\triangle WARNING Δ

3. When used with the inverter, a molded case circuit breaker (MCCB), residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) or magnetic contactor (MC) should conform to the EN or IEC standards.
4. When you use a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) for protection from electric shock in direct or indirect contact power lines or nodes, be sure to install type B of RCD/ELCB on the input (primary) of the inverter.

*1 The frame size and model of the MCCB or RCD/ELCB (with overcurrent protection) will vary, depending on the power transformer capacity. Refer to the related technical documentation for details.
5. The inverter should be used in an environment that does not exceed Pollution Degree 2 requirements. If the environment has a Pollution Degree 3 or 4, install the inverter in an enclosure of IP54 or higher.
6. Install the inverter, AC or DC reactor, input or output filter in an enclosure with minimum degree of protection of IP2X (Top surface of enclosure shall be minimum IP4X when it can be easily accessed), to prevent human body from touching directly to live parts of these equipment.

\triangle WARNING \wedge

7. Do not connect any copper wire directly to grounding terminals. Use crimp terminals with tin or equivalent plating to connect them.
8. When you use an inverter at an altitude of more than 2000 m , you should apply basic insulation for the control circuits of the inverter. The inverter cannot be used at altitudes of more than 3000 m .
9. Use wires described in Chapter 2 "2.2.5 [1] Screw specifications" and "2.2.5 [3] Recommended wire size (main circuit terminals)."
10. Use this inverter at the following power supply system.

TN-S system

(corner earthed/phase-earthed)
(Applicable for 200 V type only) $* 2$)
*1 Use this inverter at the following IT system.

Non-earthed (isolated from earth) IT system	Can be used. In this case the insulation between the control interface and the main circuit of the inverter is basic insulation. IT system which earthed neutral thy an impedance not connect SELV circuit from external controller directly (make connection using a supplementary insulation). Use an earth fault detector able to disconnect the power within 5s after the earth fault occurs.
Corner earthed / Phase-earthed IT system by an impedance	Can not be used

*2 Cannot apply to Corner earthed / Phase-earthed IT system of 400V type

G. 2 Harmonic Component Regulation in the EU

[1] General comments

When you use general-purpose industrial inverters in the EU, the harmonics emitted from the inverter to power lines are strictly regulated as stated below.
If an inverter whose rated input is 1 kW or less is connected to public low-voltage power supply, it is regulated by the harmonics emission regulations from inverters to power lines (with the exception of industrial low-voltage power lines). Refer to Figure G-2 Power Source and Regulation below for details.

Figure G-2 Power Source and Regulation

[2] Compliance with the harmonic component regulation

Table G-3 Compliance with Harmonic Component Regulation

Power supply voltage	Inverter type	Nominal applied motor(kW)	ND/HD/ HND/HHD	w/o DC reactor	w/ DC reactor	Applicable DC reactor type
	VF1A-G02A1S4	0.4	HHD	-	V	DCR4-0.4
		0.75	HND	-	$\sqrt{ }$	DCR4-0.75
	VF1A-G04A1S4	0.75	HHD	-	$\sqrt{ }$	DCR4-0.75

G. 3 Compliance with UL Standards and Canadian Standards (cUL certification) ((14)

Originally, the UL standards were established by Underwriters Laboratories, Inc. as private criteria for inspections/investigations pertaining to fire/accident insurance in the USA. Later, these standards were authorized as the official standards to protect operators, service personnel and the general populace from fires and other accidents in the USA.
cUL certification means that UL has given certification for products to clear CSA Standards. cUL certified products are equivalent to those compliant with CSA Standards.

Notes

The inverter that UL/cUL mark is displayed are subject to the regulations set forth by the UL standards and CSA standards (cUL-listed for Canada) by installation within precautions listed below.

\triangle CAUTION

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.

1. Solid state motor overload protection (motor protection by electronic thermal overload relay) is provided in each model.
Use function codes F10 to F12 to set the protection level, refer to the description below.

F10	Electronic thermal overload protection for motor 1 (Select motor characteristics)	1: Enable (For a general-purpose motor with self-cooling fan) 2: Enable (For an inverter-driven motor with separately powered cooling fan)
F11	(Overload detection level)	0.00 (disable), current value of 1 to 135% of inverter rated current (Inverter rated current dependent on F80)
		0.5 to 75.0 min, Refer to the graph below.

2. Use Cu wire only.
3. Use Class 1 wire only for control circuits.
4. Short circuit rating

For Models VF1A-G02A1S4 to VF1A-G44A0S4:
"Suitable For Use On A Circuit Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J or Class CC Fuses."
For Models VF1A-G59A0S4 or above:
"Suitable For Use On A Circuit Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J or Class CC Fuses or a Circuit Breaker Having An Interrupting Rating Not Less Than 100,000 rms Symmetrical Amperes, 480 Volts minimum."

\triangle CAUTION

5. Field wiring connections must be made by a UL Listed and CSA Certified closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed using the crimp tool specified by the connector manufacturer.
6. All circuits with terminals L1/R, L2/S, L3/T, L1/L, L2/N, R0, T0 must have a common disconnect and be connected to the same pole of the disconnect if the terminals are connected to the power supply.

Connection diagram of the three phase input type.

VF1A-G12A0S4 or below

VF1A-G21A5S4 or above

\triangle CAUTION

7. Environmental Requirements
7.1 Type VF1A-G21A5S4 or above

- Maximum Surrounding Air Temperature / Maximum ambient temperature The ambient temperature shall be lower than the values in the table below.

Enclosure Type	ND/HD	HND/HHD
Open Type	40 deg C	50 deg C
Enclosed Type	40 deg C	40 deg C

- Atmosphere

For use in pollution degree 2 environments (for Open-Type models).
7.2 Type VF1A-G12A0S4 or below

- Maximum Surrounding Air Temperature

The surrounding air temperature shall be lower than the values in the table below.

Enclosure Type	ND/HD	HND/HHD
Open Type VF1A-G05A5S4 or below	$40 \operatorname{deg~C~}$	50 deg C
Open Type VF1A-G06A9S4 VF1A-G12A0S4	40 deg C	50 deg C (HHD) 40 deg C (HND)

- Atmosphere

For use in pollution degree 2 environments (for Open-Type models).
8. Plenum rated drives

UL Enclosed Type is Suitable for installation in a compartment handling conditioned air. Models of VF1AG12A0S4 or below are excluded.
9. Functional Description of Control Circuit Terminals

A power source for connection to the Integrated alarm output (30A, 30B, 30C) should be limited to overvoltage category II such as control circuit or secondary winding of power transformer.

Classification	Terminal Symbol	Terminal Name	Functional description
Contact output	$[30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]$	Integrated alarm output	When the inverter stops with an alarm, output is generated on the relay contact (1C). Contact capacitance: AC250 V $0.3 \mathrm{~A} \cos \phi=1$, DC30 V 0.5 A

10. All models rated $380-480 \mathrm{~V}$ input voltage ratings shall be connected to TN -C system power source, i.e. 3phase, 4 -wire, wye ($480 \mathrm{Y} / 277 \mathrm{~V}$), so that the phase-to-ground rated system voltage is limited to 300 V maximum.

\triangle CAUTION

11. Install UL certified fuses or circuit breaker between the power supply and the inverter, referring to the table below.

\triangle CAUTION

Note: Control circuit terminals M2 tightening torque: $1.7 \mathrm{lb}-\mathrm{in}(0.19 \mathrm{~N} \cdot \mathrm{~m}) \pm 10 \%$
Recommended wire size: AWG26 to 18 (0.14 to $1 \mathrm{~mm}^{2}$)
M3 tightening torque: 4.4 to $5.3 \mathrm{lb}-\mathrm{in}(0.5$ to $0.6 \mathrm{~N} \cdot \mathrm{~m}$), recommended wire size: AWG26 to 16 (0.14 to 1.5 mm^{2})
*1 No terminal end treatment is required for connection.
*2 Use $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right) \mathrm{Cu}$ wire only.
*3 The wire size of UL Open Type and Enclosed Type are common. Please contact us if UL Open Type exclusive wire is necessary.
*4 6 rms Amperes for aux. control power supply. There is no aux. control power supply in VF1A-G21A5S4 or below.
*5 5 rms Amperes for aux. control power supply. There is no aux. control power supply in VF1A-G21A5S4 or below.

G. 5 Compliance with UK Standards (〔尺)

Table G-5 Conformity with Standards

Item	Regulations	Standards
Electromagnetic Compatibility	2016	EN61800-3 $: 2004$, A1:2012 EN61800-3 $: 2018$ Immunity $:$ Second environment (Industrial) Emission : Applicable only when an optional EMC-compliant filter is attached. : Category C2
Electrical Equipment (Safety)	2016	EN61800-5-1 : 2007
Machinery Safety	2008	EN 61800-5-2 $: 2007$ SIL3 (Functional Safety : STO) EN 60204-1 $: 2018$ (in extracts), Stop Category 0 EN ISO 13849-1 $: 2015$, PL=e, Cat.3 EN 62061 $:$ 2005, AC:2010, A1:2013, A2:2015, SIL CL3
The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment	2012	EN IEC63000 : 2018

High Performance Inverter

Doesa
VF1A series

Instruction Manual

April 2022

IDEC CORPORATION

The purpose of this Instruction manual is to provide accurate information in handling, setting up and operating of the Doesa VF1A series of inverters. Please feel free to send your comments regarding any errors or omissions you may have found, or any suggestions you may have for generally improving the manual.

In no event will IDEC CORPORATION. be liable for any direct or indirect damages resulting from the application of the information in this manual.

IDEC CORPORATION

USA	IDEC Corporation	Singapore	IDEC Izumi Asia Pte. Ltd.	China	IDEC (Shanghai) Corporation
EMEA	APEM SAS	Thailand	IDEC Asia (Thailand) Co., Ltd.		IDEC Izumi (H.K.) Co., Ltd.
		India	IDEC Controls India Private Ltd.	Taiwan	IDEC Taiwan Corporation

[^0]: Note This icon indicates information which, if not heeded, can result in the inverter not operating to full efficiency, as well as information concerning incorrect operations and settings which can result in accidents.

 Tip This icon indicates information that can be useful when performing certain settings or operations.
 [1] This icon indicates a reference to more detailed information.

[^1]: Exercise caution as expected operation may not result if the setting above is not conducted accurately.

[^2]: \square indicates quick setup target function code.
 *6: Factory defaults are depended on motor capacity. Refer to the Doesa VF1A series User's Manual, "5.2.4 Motor constant".
 *7: Factory defaults are the parameters for PMSM (GNB2 series) and depended on motor capacity.
 *9: Factory use. Do not access these function codes.

[^3]: *9: Factory use. Do not access these function codes.

[^4]: See page shows the page of the Doesa VF1A series user＇s manual．＊：VF1A does not support CAN communication．

