NIDEC

Application Note

FC6A Series PLC Communicating with an Arduino Uno over

Modbus RTU
B O 1YY 41 SRR 2
Figure 1. IDEC FC6A Plus PLC with FC6A-HPH1 and FCEA-PC3 Installed...............cccooioimiooieieeeeeee e 2
Figure 2. Arduino Uno R3 Pin INFOIMEATIONeoo oottt e e e e e e e e 2
Figure 3. TTL-10-RS485 CONVEITELoe ettt ettt et e et e st e e et e s e e e aaseeaseaeanneaeneaeannes 3
B YT T o Yo I @ ol 0 T=Tox (o] =R SRRRRRSRRR 3
FiQUIe 4. WIFING DIAQIAIM.........coeeeeeeeeeeeeeete ettt ettt e et e st e ettt e e st e et e st e eatn e nneaennne s 3
. Setting up the FCBA as a Modbus RTU Master ... 4
Figure 5. Selecting the Serial COMMUNICALION POeoe et e e a e s eessseeaeeae 4
Figure 6. Configuring Port 2 as @ Modbus RTU MaSIEIoccuee oottt 4
Figure 7. The Modbus RTU Master REQUEST TADIEcceeoeueeeieeeeeee ettt 4
Figure 8. Modbus RTU Master Request Table with FOUr REQUESTScoeeeieeeeeeee e 5
Figure 9. FC6A Modbus RTU CommuUNICAtION SEIHNGS...........coioueeieiieeeieeeeee ettt 6
Figure 10. Communication Ports Dialog Box with Setup COMPIELEQ.............ccoooeeeeeeiiieeeeee e 6
Lo (V=T DR o B O o (o T - Ty SR 7
. Setting Up the Arduino as a Modbus RTU SIave ... 8
Figure 12. MANAQGE LIDIATIESc.oooieeeeeeeeeeeeeete ettt ettt s e ettt e st e e st e st s et e st e ennne s 8
Figure 13. ArduinoModbus and ArdUinORSA85 LiDIari@s............cccuuueiicueieiiieeie et 8
Figure 14. Transfer Program t0 the ArQUINO.o.eee oottt e e et a e st e e e e e anseee s 10
. Checking Connectivity and Testing Reading/WIitiNgceeeeeieiiiiiiiiiiiieeee e 11
Figure 15. Monitoring Communications for all Four Modbus REQUESISc.coeieeeeeieeieeeeee e 11
Figure 16. Reading and Writing REGISIEr DALAooeeiueeeeeeee ettt e e e es 11
Figure 17. Reading and WIiting Bit DATA................oui ittt et a e et s e s e e e anneee s 12
N = o1 T (=3 (o [T aTo T d (ol = 1 o O RRRRPRPRRPRRTRN 13

Page 1 of 14

FIDEC

Application Note

1. Overview

In this application, we will cover how to connect an FC6A series PLC to an Arduino Uno using Modbus RTU
communications.

We will be using an FC6A Plus PLC with an FC6A-HPH1 expansion cartridge base module. An FC6A-PC3 (RS485
cartridge) will be installed in the bottom slot of the FC6A-HPH1. This will be configured as serial communications port 2 in
WindLDR, with the FC6A Plus PLC set up as the Modbus RTU master:

Figure 1. IDEC FC6A Plus PLC with FC6A-HPH1 and FC6A-PC3 Installed

We will be using an Arduino Uno R3 as the Modbus RTU slave:

Power Input B

(barrel connector)

. X1

2
|
=
&
a
o

W

TXO »1 -
RX0 40 =

Figure 2. Arduino Uno R3 Pin Information

Page 2 of 14

NIDEC

Application Note

As the UART (serial port) on the Arduino supports TTL logic, we will also need to use a converter to transform the TTL
signals into RS485:

OTIL e e By BY [s ¢ mRetese)

Figure 3. TTL-to-RS485 Converter

2. Wiring Connections

The Arduino is being powered via the USB connection to the computer. Note that it could have also been powered
externally via a power supply connected to the power input barrel connector or to the 5V power input pin and one of the
ground pins in the POWER pin section of the Arduino.

The TTL-to-RS485 converter that we are using is also powered via 5V DC.

Power Input ——

(barrel connector)

oTTL— % Bo [3Rs4s50
SENE T
SE=aCk| <T

Figure 4. Wiring Diagram

Page 3 of 14

FIDEC

Application Note

3. Setting up the FC6A as a Modbus RTU Master

Now that we have everything wired together, we need to configure the FC6A to be a Modbus RTU master.

In WindLDR, click on Configuration - Comm Ports:

Configuration IRV

Home

y < -
L] L
X9 3 8 L
PLC Expansion | Run/Stop Memory Input Fxternal Deviee Program
Type Modules | Control Backup Configurstioh = Ports | [Memory Settings Protection Dlag

Function Area Settings

Figure 5. Selecting the Serial Communication Port

This will bring up the Communication Ports dialog box. Beside Port 2, click where it says Maintenance Protocol. A drop-

down will appear where we can select Modbus RTU Master:

Function Area Settings it
Run/Stop Control .';RIConfigurethecommumcataon ports. =
Memory Backup
Input Configuration Communication Ports
Communication Ports Port Communication Mode Comm, Param. Slave No. Interface Slot
External Memory Devices 1 Maintenance Protocol Configure 115200-7-Even-1 0 Cartridge Slot 1
Device Settings 2 |Maintenance Protocol ~| Configure = 115200-7-Even-1 0 Cartridge Slot 2
Program Protection 3 Muxszﬂg‘occzl"rmm‘ Configure | 115200-7-Even-1 0 HMI Module Slot
Self Diagnostic 4 Dala LII"Ik Master
Calendar&Clock < Modbu* RTU Master 3
Frtharnat Dart 1 6

Figure 6. Configuring Port 2 as a Modbus RTU Master
This will bring up the Modbus RTU Master Request Table:
Modbus RTU Master Request Table (Port2) ? X
Reguest Execution Device Error Status
@ use | ®unuse Use o @unuse
rorstatus on vhen commun
F:fuq_‘ Function Code Dwg:‘:&{ DataSize | WordBit 5'?;2";’%“ mﬂfj:"e Reqb&fﬁi"“m Error Status
1
2
3
%

Figure 7. The Modbus RTU Master Request Table

Page 4 of 14

NIDEC

Application Note

For this application, we are going to set it up so that the PLC writes 10 registers and 10 bits to the Arduino. The Arduino
will read this information and send it back to the PLC in 10 different registers and 10 different bits. This way, we can
confirm that the data we send to the Arduino is indeed being received.

Read 10 Registers from the Arduino to the PLC

For the first request, we’'ll use a function code of 04 Read Input Registers to read 10 registers from the Arduino into the
PLC and store them in consecutive data registers starting with DO (the data being read from the Arduino will be stored in
D0-D9 in the PLC).

Read 10 Bits from the Arduino to the PLC

For the second request, we’ll use a function code of 02 Read Input Status to read 10 bits from the Arduino into the PLC
and store them in consecutive internal relays starting with MO (the data being read from the Arduino will be stored in MO-
M7 and M10-M11 in the PLC — remember, internal relays use octal-based addressing, so no 8’s or 9’s in their addresses!).

Write 10 Registers from the PLC to the Arduino

For the third request, we'll use a function code of 16 Preset Multiple Registers to write the values of 10 consecutive data
registers starting from D50 in the PLC into the Arduino. We'll write these into holding registers starting with Modbus
address 400001.

Write 10 Bits from the PLC to the Arduino
For the last request, we’ll use a function code of 15 Force Multiple Coils to write the values of 10 consecutive internal
relay starting from M20 from the PLC into the Arduino. We'll write these into coils starting with Modbus address 000001.

When we get to the Arduino code, we’ll assign it a Modbus slave address of 1. This needs to be referenced in the Slave
Number column in the Modbus RTU Master Request Table for each request.

We’'ll use Request Execution Devices to control when each Modbus request gets executed. We'll start the addressing of
these devices at M100, so with four Modbus requests, we’ll be using M100, M101, M102 and M103. When these bits turn
on, the corresponding Modbus request will be executed.

We’ll also use the Error Status registers so that we can monitor the communications status of each request to make sure
they are working as expected. We’'ll start the addressing for this at D100. With four Modbus requests, we’ll be using
D100, D101, D102 and D103.

Modbus RTU Master Request Table (Port2)
Reguest Execution Device Error Status
® Use M0 100 Unuse ® Use DO0100 Unuse [C] Use a single DR for all communication requests
Update error status only when communication fails
F:f:_' Function Code D evEeaSAt;(;ress Data Size Word/Bit SI?S' E‘DN;;”%ET Magggf:gve Reqb?:f;‘ o Error Status

T 04 Read Input Registers D0000 e 10 Word 1 300001 MO0100 DO0100
2 02 Read Input Status MO0000 we | 10 Bit 1 100001 M0101 D0101
3 16 Preset Multiple Registers DO0050 we |10 Word 1 400001 M0102 D0102
4 15 Force Multiple Cails M0020 10 Bit i 000001 M0103 D0103

Figure 8. Modbus RTU Master Request Table with Four Requests

Page 5 of 14

NIDEC

Application Note

Communication Parameters

The last item that we need to configure in this table are the communication parameters — the baud rate, parity and stop
bits that we want to use for Modbus communication. To set this up, click on the Communication Settings button in the
bottom left-hand corner of the table.

We want to set the Baud Rate to 9600, the Parity to None and the Stop Bit to 1:

Communication Settings ? X |
Baud Rate(bps): :'ﬂﬁﬂu :3
Parity: :Nnne 3
Stop Bit _1 :' |
Retry Cycle: 1 i{
Receive Timeout (10ms): 50 ii
Transmission Wait Time (ms): 0 i{

oK Cancel

Figure 9. FC6A Modbus RTU Communication Settings

Once this is configured, click OK in the Communication Settings dialog box and click OK in the Modbus RTU Master
Request Table. This will put us back in the Communications Ports dialog box, where we will see the Port 2 has been
configured as a Modbus RTU Master with communication parameters of 9600 baud, 8 data bits, no parity and one stop
bit:

Function Area Settings ? *
Run/Stop Control 'ﬁIConﬁgurethecommumcatlon ports, s
Memory Backup
Input Configuration Communication Ports
Communication Ports Port Communication Mode Comm. Param. Slave No. Interface Slot
External Memory Devices 1 Maintenance Protocol Configure 115200-7-Even-1 0 Cartridge Slot 1
Device Settings | 2 Modbus RTU Master Configure ~ 9600-8-None-1 (not necessary) Cartridge Slot 2
Program Protection 3 Maintenance Protocol Configure 115200-7-Even-1 0 HMI Module Slot

Figure 10. Communication Ports Dialog Box with Setup Completed

We can click OK in this dialog box to confirm everything.

Page 6 of 14

NIDEC

Application Note

Now that we have the Modbus communications set up, we need to write a small PLC program to control when the
Modbus Request Execution Devices get turned on.

Let’s say we want to execute these four Modbus requests roughly every 100 ms. We can set up a self-resetting timer to
give us a pulse every 100 ms to turn on the four internal relays that we’re using as the Request Execution Devices.

Rung 1
1

100 ms Timer 100 ms Timer

TO000

TMH T0000
10

Execute
Modbus
Request #1

Figure 11. PLC Program

Once we have this program completed, we can download it to the PLC.

MO100
Execute
Modbus
Request #2

MO101
Execute
Modbus
Request #3

MO0102
Execute

Modbus
Request #4

MO103

Page 7 of 14

NIDEC

Application Note

4. Setting Up the Arduino as a Modbus RTU Slave

The program for the Arduino was written using the Arduino IDE, which can be downloaded from Arduino’s website:
https://www.arduino.cc/en/software

Once the IDE is installed and launched, the first thing we need to do is to install the libraries that we are going to be using.
For this application, we are using the ArduinoModbus and ArduinoRS485 libraries.

In the Arduino IDE, go to Tools - Manage Libraries:

File Edit Sketc Help

Auto Format Ctrl+T
Archive Sketch
Modbus RTU Fix Encoding & Reload

1 I Manage Libraries... I Ctrl+5hift+I

Figure 12. Manage Libraries

This will bring up the Library Manager. If you search for ArduinoRS485, this will bring up both libraries that we need.
Click on each one and click the Install button to install each library.

@ Library Manager pe

<

Type |All ~ | Topic |All ArduinoRS485

ArduinoModbus ”~

oy Arduine Version 1.0.60 INSTALLED

Use Modbus equipment with your Arduino. Using TCP or RS485 shields, like the MKR 485 Shield. This library depends on the ArduinoR5485
library.

More info

_
ArduinoRS5485

by Arduino Version 1.0.2 INSTALLED

Enables sending and receiving data using the RS-485 standard with RS-485 shields, like the MKR 485 Shield. This library supports the
Maxim Integrated MAX2157 and equivalent chipsets.

More info

Figure 13. ArduinoModbus and ArduinoRS485 Libraries

Now, let’s write the Arduino code!
First, we need to include the two libraries that we need to use:

#include <ArduinoRS485.h>
#include <ArduinoModbus.h>

Next, let's name digital pin 13 on the Arduino LED_PIN. We’ll use this later in the code:

#define LED_PIN 13

Page 8 of 14

IDEC

Application Note

Let’s set up some variables to define the number of coils, discrete inputs, holding registers and input registers we’ll be
using. Let’s also set up a variable called LED_CONTROL — we’ll use this to control digital pin 13 later in the program.

const int numCoils = 10;

const int numDiscretelnputs = 10;
const int numHoldingRegisters = 10;
const int numinputRegisters = 10;
long LED_CONTROL = 0;

In the Arduino, there are two primary functions that are used — setup and loop. The setup function is where you do
initialization — things you only want to happen once. The loop function is where you write the main section of your
program — what you write in here will execute over and over continually.

In the setup function, we’ll define pin 13 — our LED_PIN — as an output so that we can write to it. We’ll also enable the
serial port for 9600 baud and start the Modbus RTU server:

void setup() {
pinMode(LED_PIN, OUTPUT);

Serial.begin(9600);
while (!Serial);
Serial.printin("Arduino as a Modbus RTU Server");

/I start the Modbus RTU server, with slave ID of 1
if (ModbusRTUServer.begin(1, 9600))

Serial.printin("Failed to start Modbus RTU Server!");
while (1);
}

We'll also configure the Modbus coils, discrete inputs, holding registers and input registers and have them all start at the
first address:

/I configure coils at address 0x00
ModbusRTUServer.configureCoils(0x00, numCoils);

/I configure discrete inputs at address 0x00
ModbusRTUServer.configureDiscretelnputs(0x00, numDiscretelnputs);

/I configure holding registers at address 0x00
ModbusRTUServer.configureHoldingRegisters(0x00, numHoldingRegisters);

/I configure input registers at address 0x00
ModbusRTUServer.configurelnputRegisters(0x00, numinputRegisters);

}
In the loop function, we’ll poll for Modbus RTU requests:
void loop() {

// poll for Modbus RTU requests
ModbusRTUServer.poll();

Page 9 of 14

NIDEC

Application Note

We’ll map the coils (what we are writing to with the PLC) into discrete inputs to be read by the PLC. Similarly, we’ll map
the holding registers (what we are writing to with the PLC) into input registers to be read by the PLC.

We’'ll also read the value of the first holding register into our LED_CONTROL variable:

/ map the coil values to the discrete input values (what we write to the Arduino coils is echoed back into the
discrete inputs on the PLC)
for (inti = 0; i < numCoils; i++) {
int coilValue = ModbusRTUServer.coilRead(i);
ModbusRTUServer.discretelnputWrite(i, coilValue);

}

// map the holding register values to the input register values (what we write to the Arduino holding registers is
echoed back into the input registers on the PLC)
for (int i = 0; i < numHoldingRegisters; i++) {
long holdingRegisterValue = ModbusRTUServer.holdingRegisterRead(i);
long LED_CONTROL = ModbusRTUServer.holdingRegisterRead(0);
ModbusRTUServer.inputRegisterWrite(i, holdingRegisterValue);

Finally, we’ll control the LED built-in to the Arduino that is controlled by pin 13. Whenever the first holding register — what
we read into the variable LED_CONTROL - is equal to 1, we’ll turn on pin 13, which will turn on the LED. Any other value
will turn pin 13 and the LED off:

// control the LED attached to pin 13 based on the value of the first holding register coming from the PLC
(Modbus RTU master)
if LED_CONTROL == 1) {
digitalWrite(LED_PIN, HIGH);
}
else {
digitalWrite(LED_PIN, LOW);
}
}
}

That’s it! We can now transfer our program to the Arduino by clicking on the Upload button in the icon bar:

@ Modbus_RTU_Server_3 | Arduino 1.8.13
File Edit Sketch Tools Help

oo H E Upload

Figure 14. Transfer Program to the Arduino

Page 10 of 14

NIDEC

Application Note

5. Checking Connectivity and Testing Reading/Writing

The first thing we want to check is to make sure the PLC and the Arduino are communicating. To do this, we can monitor
our error status registers that we set up for our four Modbus requests. We’ll monitor these as HEX(W) values. For
successful communication, we should see the slave number as the first two digits, with 00 in the last two digits. Any other
numbers in the last two digits indicates that something isn’t quite right.

We’'ll set up a custom monitor dialog box in the PLC program to check this:

Figure 15. Monitoring Communications for all Four Modbus Requests

H__ Arduino Monitor - Overall Comms ? x
Device Device Address Monitor Type Device Range Current Value Preset Value Comment A

DO100 - D0100 HEX (W) 0 0100 Modbus Read Input Registers

D0101 :I D0101 HEX (W) 0 0100 Modbus Read Input Status

D0102 .| D0102 HEX (W) 0 0100 Modbus Preset Multiple Registers

D0103 ...||D0103 HEX (W) 0 0100 Modbus Force Multiple Coils

With all four Modbus requests executing correctly, we can now create another custom monitor dialog box to see if what
we are writing to the Arduino (in data registers D50-D59) is getting copied into the input registers in the Arduino and then
read back into the PLC in data registers D0-D9.

Good news! The values that we write in D50-D59 are indeed showing up in DO-D9:

[T Arduino Monitor - Registers

Write Close Save
Device Device Address Monitor Type Device Range Current Value Preset Value Comment
D0100 || D0O100 | HEX (W) 0 0100 Modbus Read Input Registers
D0102 |-/ 00102 | HEX (W) 0 0100 Modbus Preset Multiple Registers
| DEC (W) 0
D0000 ... |[Doo00 |DEC (W) 0 1 PLC D50 Read from Arduino
D0001 ...||DO00O1 DEC (W) 0 0 PLC D51 Read from Arduino
D0002 | DO0O2 |DEC (W) 0 12 PLC D52 Read from Arduino
D0003 : D0003 DEC (W) 0 755 PLC D53 Read from Arduino
D0004 ...||D0D04 DEC (W) 0 80 PLC D54 Read from Arduino
D000S .|| DO0OS |DEC (W) 0 19 PLC D55 Read from Arduino
D000& .| Dooos | DEC (W) 0 5 PLC D56 Read from Arduino
D0007 : DO007 | DEC (W) 0 1 PLC D57 Read from Arduino
D0008 ...||D0008 DEC (W) 0 1] PLC D58 Read from Arduino
D0003 ...| DO009 DEC (W) 0 b PLC D59 Read from Arduino
= |DEC (W) 0
D0050 ||| DOOS0 |DEC (W) 0 1 Write to Arduino, echoed in PLC DO
D051 ..||DoDS1 |oEC (W) 0 0 Write to Arduino, echoed in PLC D1
D0052 ..||DO0S2 :DEC w) 0 12 Write to Arduino, echoed in PLC D2
D00S3 |-« DOOS3 |DEC (W)] 755 Write to Arduino, echoed in PLCD3
D0054 : D0054 | DEC (W) 0 80 Write to Arduino, echoed in PLC D4
D0055 .:||D0DSS |DEC (W) 0 19 Write to Arduino, echoed in PLC D5
D0056 ...||DO0S6 |DEC w) 0 5 Write to Arduino, echoed in PLC D&
D0057) D0057 :DEC w) 0 1 Write to Arduino, echoed in PLC D7
D0058 : D0058 |DEC (W) 0 0 Write to Arduino, echoed in PLC D8
D0059 .| DO0S9 | DEC (W) 0 1 Write to Arduino, echoed in PLC D9

Figure 16. Reading and Writing Register Data

Page 11 of 14

NIDEC

Application Note

Now let’s check to see if the bits we are writing into M20-M27 and M30-M31 are getting received by the Arduino and

mapped into the discrete inputs (read back into the PLC in MO-M7 and M10-M11):

[T Arduino Monitor - Bits ?
Write Close Save
| Device Device Address Monitor Type Device Range Current Value Preset Value Comment
D0101 - D0101 | HEX (W) 0 0100 Modbus Read Input Status
D0103 7\ D0103 :I-EX w) 0 0100 Modbus Force Multiple Coils
= |DEC (W) 0
Mo00O (1] M0ODO BN @) 0 1 PLC M20 Read from Arduino
Mo001 o] mo001 e @) 0 [1 '|pLC M21 Read from Arduino
MD002 [[2=] mooo2 [em @) 0 0 PLC M22 Read from Arduino
MDOD3 [[2«] mooo3 B B) 0 0 PLC M23 Read from Arduino
M0004 -] Moooa [@) 0 1 PLC M24 Read from Arduino
MD0OS [maoos [em @ 0 1 PLC M25 Read from Arduin
MDO0G (] MDODS BIN (B) 0 0 PLC M26 Read from Arduino
MDOO7 |[-=| mooo7 e (B) 0 0 PLC M27 Read from Arduino
MDD 10 (o] Mo010 6 B o 1 PLC M30 Read from Arduino
MO0 11 [Moo 11 |em) 0 1 PLC M31 Read from Arduino
[] |DEC (W) 0
MDO20 [moo20 BIN (B) 0 1 \Write to Arduino, echoed in PLC MO
M0021 [mooz1 B B) 0 1 Wirite to Arduino, echoed in PLC M1
MD022 o] mo022 (e B) To o \Write to Arduino, echoed in PLC M2
M0023 |[z=] moo23 e @) 0 0 Write to Arduino, echoed in PLC M3
MD024 [« Moo24 [Em @ 0 1 Write to Arduino, echoed in PLC M4
MD025 .| Moo25 e @) 0 1 Write to Arduino, echoed in PLC M5
M0026 |L== | MOO26 %EIIN B) 0 0 Write to Arduino, echoed in PLC M&
MD027 [[z] o027 [Em @) 0 0 Write to Arduino, echoed in PLC M7
MDO30 o] w0030 BIN (B) 0 1 Write to Arduine, echoed in PLC M10
MD031 .| MO031 BN B) 0 1 Write to Arduino, echoed in PLC M11

This is working correctly as well.

Figure 17. Reading and Writing Bit Data

The final item we need to check is to see if the LED on-board the Arduino that is controlled by pin 13 turns on when we
write a value of 1 into D50 and turns off when we write any other value. A quick test of this shows the LED is working
correctly, so all of the code that we wrote for the PLC and for the Arduino is functioning as desired!

Page 12 of 14

IDEC

Application Note

6. Entire Arduino Program

In case you wanted to copy the Arduino code, it is included below in its entirety:

#include <ArduinoRS485.h>
#include <ArduinoModbus.h>

#define LED_PIN 13

const int numCoils = 10;

const int numDiscretelnputs = 10;
const int numHoldingRegisters = 10;
const int numinputRegisters = 10;
long LED_CONTROL = 0;

void setup() {
pinMode(LED_PIN, OUTPUT);

Serial.begin(9600);
while (!Serial);
Serial.printin("Arduino as a Modbus RTU Server");

/I start the Modbus RTU server, with slave ID of 1

if ('ModbusRTUServer.begin(1, 9600))

{
Serial.printin("Failed to start Modbus RTU Server!");
while (1);

}

/I configure coils at address 0x00
ModbusRTUServer.configureCoils(0x00, numCoils);

/I configure discrete inputs at address 0x00
ModbusRTUServer.configureDiscretelnputs(0x00, numDiscretelnputs);

/I configure holding registers at address 0x00

ModbusRTUServer.configureHoldingRegisters(0x00, numHoldingRegisters);

/I configure input registers at address 0x00
ModbusRTUServer.configurelnputRegisters(0x00, numinputRegisters);

}

void loop() {
// poll for Modbus RTU requests
ModbusRTUServer.poll();

/ map the coil values to the discrete input values (what we write to the Arduino coils is echoed back into the

discrete inputs on the PLC)
for (inti = 0; i < numCoils; i++) {
int coilValue = ModbusRTUServer.coilRead(i);
ModbusRTUServer.discretelnputWrite(i, coilValue);

}

Page 13 of 14

IDEC

Application Note

// map the holding register values to the input register values (what we write to the Arduino holding registers is
echoed back into the input registers on the PLC)
for (inti = 0; i < numHoldingRegisters; i++) {
long holdingRegisterValue = ModbusRTUServer.holdingRegisterRead(i);
long LED_CONTROL = ModbusRTUServer.holdingRegisterRead(0);
ModbusRTUServer.inputRegisterWrite(i, holdingRegisterValue);

// control the LED attached to pin 13 based on the value of the first holding register coming from the PLC
(Modbus RTU master)
if LED_CONTROL ==1) {
digitalWrite(LED_PIN, HIGH);
}
else {
digitalWrite(LED_PIN, LOW);
}
}
}

Page 14 of 14

