

Application Note

Page 1 of 14

FC6A Series PLC Communicating with an Arduino Uno over
Modbus RTU

1. Overview .. 2

Figure 1. IDEC FC6A Plus PLC with FC6A-HPH1 and FC6A-PC3 Installed .. 2

Figure 2. Arduino Uno R3 Pin Information ... 2

Figure 3. TTL-to-RS485 Converter .. 3

2. Wiring Connections .. 3

Figure 4. Wiring Diagram... 3

3. Setting up the FC6A as a Modbus RTU Master ... 4

Figure 5. Selecting the Serial Communication Port .. 4

Figure 6. Configuring Port 2 as a Modbus RTU Master .. 4

Figure 7. The Modbus RTU Master Request Table .. 4

Figure 8. Modbus RTU Master Request Table with Four Requests ... 5

Figure 9. FC6A Modbus RTU Communication Settings .. 6

Figure 10. Communication Ports Dialog Box with Setup Completed .. 6

Figure 11. PLC Program.. 7

4. Setting Up the Arduino as a Modbus RTU Slave ... 8

Figure 12. Manage Libraries ... 8

Figure 13. ArduinoModbus and ArduinoRS485 Libraries .. 8

Figure 14. Transfer Program to the Arduino.. 10

5. Checking Connectivity and Testing Reading/Writing ... 11

Figure 15. Monitoring Communications for all Four Modbus Requests .. 11

Figure 16. Reading and Writing Register Data ... 11

Figure 17. Reading and Writing Bit Data ... 12

6. Entire Arduino Program.. 13

Application Note

Page 2 of 14

1. Overview

In this application, we will cover how to connect an FC6A series PLC to an Arduino Uno using Modbus RTU
communications.

We will be using an FC6A Plus PLC with an FC6A-HPH1 expansion cartridge base module. An FC6A-PC3 (RS485
cartridge) will be installed in the bottom slot of the FC6A-HPH1. This will be configured as serial communications port 2 in
WindLDR, with the FC6A Plus PLC set up as the Modbus RTU master:

Figure 1. IDEC FC6A Plus PLC with FC6A-HPH1 and FC6A-PC3 Installed

We will be using an Arduino Uno R3 as the Modbus RTU slave:

Figure 2. Arduino Uno R3 Pin Information

Application Note

Page 3 of 14

As the UART (serial port) on the Arduino supports TTL logic, we will also need to use a converter to transform the TTL
signals into RS485:

Figure 3. TTL-to-RS485 Converter

2. Wiring Connections

The Arduino is being powered via the USB connection to the computer. Note that it could have also been powered
externally via a power supply connected to the power input barrel connector or to the 5V power input pin and one of the
ground pins in the POWER pin section of the Arduino.

The TTL-to-RS485 converter that we are using is also powered via 5V DC.

Figure 4. Wiring Diagram

Application Note

Page 4 of 14

3. Setting up the FC6A as a Modbus RTU Master

Now that we have everything wired together, we need to configure the FC6A to be a Modbus RTU master.

In WindLDR, click on Configuration  Comm Ports:

Figure 5. Selecting the Serial Communication Port

This will bring up the Communication Ports dialog box. Beside Port 2, click where it says Maintenance Protocol. A drop-
down will appear where we can select Modbus RTU Master:

Figure 6. Configuring Port 2 as a Modbus RTU Master

This will bring up the Modbus RTU Master Request Table:

Figure 7. The Modbus RTU Master Request Table

Application Note

Page 5 of 14

For this application, we are going to set it up so that the PLC writes 10 registers and 10 bits to the Arduino. The Arduino
will read this information and send it back to the PLC in 10 different registers and 10 different bits. This way, we can
confirm that the data we send to the Arduino is indeed being received.

Read 10 Registers from the Arduino to the PLC
For the first request, we’ll use a function code of 04 Read Input Registers to read 10 registers from the Arduino into the
PLC and store them in consecutive data registers starting with D0 (the data being read from the Arduino will be stored in
D0-D9 in the PLC).

Read 10 Bits from the Arduino to the PLC
For the second request, we’ll use a function code of 02 Read Input Status to read 10 bits from the Arduino into the PLC
and store them in consecutive internal relays starting with M0 (the data being read from the Arduino will be stored in M0-
M7 and M10-M11 in the PLC – remember, internal relays use octal-based addressing, so no 8’s or 9’s in their addresses!).

Write 10 Registers from the PLC to the Arduino
For the third request, we’ll use a function code of 16 Preset Multiple Registers to write the values of 10 consecutive data
registers starting from D50 in the PLC into the Arduino. We’ll write these into holding registers starting with Modbus
address 400001.

Write 10 Bits from the PLC to the Arduino
For the last request, we’ll use a function code of 15 Force Multiple Coils to write the values of 10 consecutive internal
relay starting from M20 from the PLC into the Arduino. We’ll write these into coils starting with Modbus address 000001.

When we get to the Arduino code, we’ll assign it a Modbus slave address of 1. This needs to be referenced in the Slave
Number column in the Modbus RTU Master Request Table for each request.

We’ll use Request Execution Devices to control when each Modbus request gets executed. We’ll start the addressing of
these devices at M100, so with four Modbus requests, we’ll be using M100, M101, M102 and M103. When these bits turn
on, the corresponding Modbus request will be executed.

We’ll also use the Error Status registers so that we can monitor the communications status of each request to make sure
they are working as expected. We’ll start the addressing for this at D100. With four Modbus requests, we’ll be using
D100, D101, D102 and D103.

Figure 8. Modbus RTU Master Request Table with Four Requests

Application Note

Page 6 of 14

Communication Parameters
The last item that we need to configure in this table are the communication parameters – the baud rate, parity and stop
bits that we want to use for Modbus communication. To set this up, click on the Communication Settings button in the
bottom left-hand corner of the table.

We want to set the Baud Rate to 9600, the Parity to None and the Stop Bit to 1:

Figure 9. FC6A Modbus RTU Communication Settings

Once this is configured, click OK in the Communication Settings dialog box and click OK in the Modbus RTU Master
Request Table. This will put us back in the Communications Ports dialog box, where we will see the Port 2 has been
configured as a Modbus RTU Master with communication parameters of 9600 baud, 8 data bits, no parity and one stop
bit:

Figure 10. Communication Ports Dialog Box with Setup Completed

We can click OK in this dialog box to confirm everything.

Application Note

Page 7 of 14

Now that we have the Modbus communications set up, we need to write a small PLC program to control when the
Modbus Request Execution Devices get turned on.

Let’s say we want to execute these four Modbus requests roughly every 100 ms. We can set up a self-resetting timer to
give us a pulse every 100 ms to turn on the four internal relays that we’re using as the Request Execution Devices.

Figure 11. PLC Program

Once we have this program completed, we can download it to the PLC.

Application Note

Page 8 of 14

4. Setting Up the Arduino as a Modbus RTU Slave

The program for the Arduino was written using the Arduino IDE, which can be downloaded from Arduino’s website:
https://www.arduino.cc/en/software

Once the IDE is installed and launched, the first thing we need to do is to install the libraries that we are going to be using.
For this application, we are using the ArduinoModbus and ArduinoRS485 libraries.

In the Arduino IDE, go to Tools  Manage Libraries:

Figure 12. Manage Libraries

This will bring up the Library Manager. If you search for ArduinoRS485, this will bring up both libraries that we need.
Click on each one and click the Install button to install each library.

Figure 13. ArduinoModbus and ArduinoRS485 Libraries

Now, let’s write the Arduino code!

First, we need to include the two libraries that we need to use:

#include <ArduinoRS485.h>
#include <ArduinoModbus.h>

Next, let’s name digital pin 13 on the Arduino LED_PIN. We’ll use this later in the code:

#define LED_PIN 13

Application Note

Page 9 of 14

Let’s set up some variables to define the number of coils, discrete inputs, holding registers and input registers we’ll be
using. Let’s also set up a variable called LED_CONTROL – we’ll use this to control digital pin 13 later in the program.

const int numCoils = 10;
const int numDiscreteInputs = 10;
const int numHoldingRegisters = 10;
const int numInputRegisters = 10;
long LED_CONTROL = 0;

In the Arduino, there are two primary functions that are used – setup and loop. The setup function is where you do
initialization – things you only want to happen once. The loop function is where you write the main section of your
program – what you write in here will execute over and over continually.

In the setup function, we’ll define pin 13 – our LED_PIN – as an output so that we can write to it. We’ll also enable the
serial port for 9600 baud and start the Modbus RTU server:

void setup() {

 pinMode(LED_PIN, OUTPUT);

 Serial.begin(9600);
 while (!Serial);
 Serial.println("Arduino as a Modbus RTU Server");

 // start the Modbus RTU server, with slave ID of 1
 if (!ModbusRTUServer.begin(1, 9600))
 {
 Serial.println("Failed to start Modbus RTU Server!");
 while (1);
 }

We’ll also configure the Modbus coils, discrete inputs, holding registers and input registers and have them all start at the
first address:

 // configure coils at address 0x00
 ModbusRTUServer.configureCoils(0x00, numCoils);

 // configure discrete inputs at address 0x00
 ModbusRTUServer.configureDiscreteInputs(0x00, numDiscreteInputs);

 // configure holding registers at address 0x00
 ModbusRTUServer.configureHoldingRegisters(0x00, numHoldingRegisters);

 // configure input registers at address 0x00
 ModbusRTUServer.configureInputRegisters(0x00, numInputRegisters);
}

In the loop function, we’ll poll for Modbus RTU requests:

void loop() {
 // poll for Modbus RTU requests
 ModbusRTUServer.poll();

Application Note

Page 10 of 14

We’ll map the coils (what we are writing to with the PLC) into discrete inputs to be read by the PLC. Similarly, we’ll map
the holding registers (what we are writing to with the PLC) into input registers to be read by the PLC.

We’ll also read the value of the first holding register into our LED_CONTROL variable:

// map the coil values to the discrete input values (what we write to the Arduino coils is echoed back into the
discrete inputs on the PLC)
 for (int i = 0; i < numCoils; i++) {
 int coilValue = ModbusRTUServer.coilRead(i);
 ModbusRTUServer.discreteInputWrite(i, coilValue);
 }

 // map the holding register values to the input register values (what we write to the Arduino holding registers is
echoed back into the input registers on the PLC)
 for (int i = 0; i < numHoldingRegisters; i++) {
 long holdingRegisterValue = ModbusRTUServer.holdingRegisterRead(i);
 long LED_CONTROL = ModbusRTUServer.holdingRegisterRead(0);
 ModbusRTUServer.inputRegisterWrite(i, holdingRegisterValue);

Finally, we’ll control the LED built-in to the Arduino that is controlled by pin 13. Whenever the first holding register – what
we read into the variable LED_CONTROL – is equal to 1, we’ll turn on pin 13, which will turn on the LED. Any other value
will turn pin 13 and the LED off:

 // control the LED attached to pin 13 based on the value of the first holding register coming from the PLC
(Modbus RTU master)
 if (LED_CONTROL == 1) {
 digitalWrite(LED_PIN, HIGH);
 }
 else {
 digitalWrite(LED_PIN, LOW);
 }
 }
}

That’s it! We can now transfer our program to the Arduino by clicking on the Upload button in the icon bar:

Figure 14. Transfer Program to the Arduino

Application Note

Page 11 of 14

5. Checking Connectivity and Testing Reading/Writing

The first thing we want to check is to make sure the PLC and the Arduino are communicating. To do this, we can monitor
our error status registers that we set up for our four Modbus requests. We’ll monitor these as HEX(W) values. For
successful communication, we should see the slave number as the first two digits, with 00 in the last two digits. Any other
numbers in the last two digits indicates that something isn’t quite right.

We’ll set up a custom monitor dialog box in the PLC program to check this:

Figure 15. Monitoring Communications for all Four Modbus Requests

With all four Modbus requests executing correctly, we can now create another custom monitor dialog box to see if what
we are writing to the Arduino (in data registers D50-D59) is getting copied into the input registers in the Arduino and then
read back into the PLC in data registers D0-D9.

Good news! The values that we write in D50-D59 are indeed showing up in D0-D9:

Figure 16. Reading and Writing Register Data

Application Note

Page 12 of 14

Now let’s check to see if the bits we are writing into M20-M27 and M30-M31 are getting received by the Arduino and
mapped into the discrete inputs (read back into the PLC in M0-M7 and M10-M11):

Figure 17. Reading and Writing Bit Data

This is working correctly as well.

The final item we need to check is to see if the LED on-board the Arduino that is controlled by pin 13 turns on when we
write a value of 1 into D50 and turns off when we write any other value. A quick test of this shows the LED is working
correctly, so all of the code that we wrote for the PLC and for the Arduino is functioning as desired!

Application Note

Page 13 of 14

6. Entire Arduino Program

In case you wanted to copy the Arduino code, it is included below in its entirety:

#include <ArduinoRS485.h>
#include <ArduinoModbus.h>

#define LED_PIN 13

const int numCoils = 10;
const int numDiscreteInputs = 10;
const int numHoldingRegisters = 10;
const int numInputRegisters = 10;
long LED_CONTROL = 0;

void setup() {

 pinMode(LED_PIN, OUTPUT);

 Serial.begin(9600);
 while (!Serial);
 Serial.println("Arduino as a Modbus RTU Server");

 // start the Modbus RTU server, with slave ID of 1
 if (!ModbusRTUServer.begin(1, 9600))
 {
 Serial.println("Failed to start Modbus RTU Server!");
 while (1);
 }

 // configure coils at address 0x00
 ModbusRTUServer.configureCoils(0x00, numCoils);

 // configure discrete inputs at address 0x00
 ModbusRTUServer.configureDiscreteInputs(0x00, numDiscreteInputs);

 // configure holding registers at address 0x00
 ModbusRTUServer.configureHoldingRegisters(0x00, numHoldingRegisters);

 // configure input registers at address 0x00
 ModbusRTUServer.configureInputRegisters(0x00, numInputRegisters);
}

void loop() {
 // poll for Modbus RTU requests
 ModbusRTUServer.poll();

 // map the coil values to the discrete input values (what we write to the Arduino coils is echoed back into the
discrete inputs on the PLC)
 for (int i = 0; i < numCoils; i++) {
 int coilValue = ModbusRTUServer.coilRead(i);
 ModbusRTUServer.discreteInputWrite(i, coilValue);
 }

Application Note

Page 14 of 14

 // map the holding register values to the input register values (what we write to the Arduino holding registers is
echoed back into the input registers on the PLC)
 for (int i = 0; i < numHoldingRegisters; i++) {
 long holdingRegisterValue = ModbusRTUServer.holdingRegisterRead(i);
 long LED_CONTROL = ModbusRTUServer.holdingRegisterRead(0);
 ModbusRTUServer.inputRegisterWrite(i, holdingRegisterValue);

 // control the LED attached to pin 13 based on the value of the first holding register coming from the PLC
(Modbus RTU master)
 if (LED_CONTROL == 1) {
 digitalWrite(LED_PIN, HIGH);
 }
 else {
 digitalWrite(LED_PIN, LOW);
 }
 }
}

