IIDEC

INSTRUCTION SHEET ©CC($\epsilon_{\text {cin }}$ HE3B $\phi 16$ Rectangular
$\xrightarrow[\substack{\text { anded } \\ \text { ordered }}]{\stackrel{y}{\rightarrow}}$

Confirm that the delivered product is what you have ordered. Read this instruction sheet to make sure operation. Make sure that the struction sheet is kept by the end use.

SAFETY NOTE

In this operation instruction sheet, safety precautions are
A WARNING
to emphasize that improper operation
CAUTION
notices are used where inattention might cause personal injury mage to eq
Type

HE3B-M2P*
Contact Configuration $-{ }^{\text {Rubber boot material/ } \text { Color }}$ 3 -position Switch: 2 poles Y:Silicon rubber/ Yellow
B :Silicon rubber/ Black Rubber boot
blank: Without rubber boot N1:NBR/PVC Polyblend/ Gray
blank: Without rubber boot
P :With a rubber boot attached
2 Specifications and Ratings

Applicable Standards		IEC 60947-5-1, EN 60947-5-1, JIS C8201-5-1 IEC 60947-5-8, EN 60947-5-8 UL508, CSA C22.2 No.14, GB/T14048.5		
Standards for Use		ISO 12100-1, -2 / EN 12100-1, -2 IEC 60204-1 / EN 60204-1 ISO 11161 / prEN 11161, ISO 10218 / EN 775 ANSI / RIA R15.06, ANSI B11.19 ISO 13849-1 / EN ISO 13849-1		
Applicable Directives		Low Voltage Directive, Machinery Directive, RoHS Directive		
	Operating Temperature	$\begin{aligned} & -25 \text { to }+60^{\circ} \mathrm{C} \text { (no freezing) } \\ & \text { (rubber boot material: } \\ & \quad \text { without rubber boot// silicon rubber) } \\ & -10 \text { to }+60^{\circ} \mathrm{C} \text { (no freezing) } \\ & \text { (rubber boot material: NBR/PVC polyblend) } \end{aligned}$		
	Operating Humidity	45 to $85 \% \mathrm{RH}$ ((0 condensation) (IEC 60068-2-30)		
	Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)		
	Pollution Degree	$\begin{array}{\|l} \hline 2 \text { (inside the panel/ terminal side) } \\ 3 \text { (outside the panel/ operator side) } \\ \hline \end{array}$		
	Altitude	2000m maximum		
Impulse Withstand Voltage (Uimp)		1.5 kV		
Rated Insulation Voltage		125 V		
Thermal Current <lth>		3A		
Contact Ratings			30 V	125 V
$\begin{aligned} & \text { Refe } \\ & <\text { Re } \end{aligned}$	erence Values)	Resistive load(AC-12)		1A
	, le > AC	Inductive load(AC-15)		0.7A
		Resistive load(DC-12)	1A	0.2
	DC	Inductive load(DC-13)	0.7A	0.1A
Operation Frequency		1200 operations/hour		
B10d		100,000 (EN ISO 13849-1 Annex C Table C.1)		
Mechanical Durability		Position $1 \Rightarrow 2 \Rightarrow 1: 1,000,000$ operations min Position $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1: 100,000$ operations min		
Electrical Durability		100,000 operations min. (Rated operating load) $1,000,000$ operations min. (AC/DC 24 V 100 mA)		
Vibration Resistance		Operating Extremes : $150 \mathrm{~m} / \mathrm{s}^{2}$		
		Damage Limits : 50		
Shock Resistance		Operating Extemes : 5 to 55 Hz , half amplitude 0.5 mm		
		Damage Limits : 16.7 Hz, ha	de 1.5 m	
Degree of Protection IP40		HE3B-M2		
IP65		HE3B-M2P*		
Conditional shor--circuit Current		50A(125V)		
Short-Circuit Protective Device		125 V AC, 10A Fuse (IEC 60127-1)		
Actuator Strength		500 N minimum (when pressing the entire surface of the botton)		
Weight		Approx. 14 g (without rubber boot) Approx. 18 g (with a rubber boot)		

Ratings approved by safety agencies
(1) TUV rating $A C-12125 \mathrm{~V} / 1 \mathrm{~A}$
$\mathrm{DC}-12125 \mathrm{~V} / 0.2 \mathrm{~A}$
$\mathrm{DC}-12 \quad 30 \mathrm{~V} / 1 \mathrm{~A}$
(2) UL , c-UL rating AC $\begin{aligned} & \text { A } 125 \mathrm{~V} / 1 \mathrm{~A} \text { Resistive } \\ & \mathrm{DC} 30 \mathrm{~V} / 1 \mathrm{~A} \text { Resistive }\end{aligned}$
$\begin{array}{ll}\text { (3) CCC rating } & \mathrm{AC}-12125 \mathrm{~V} / 1 \mathrm{~A} \\ & \mathrm{DC}-12125 \mathrm{~V} / 0.2 \mathrm{~A} \\ & \mathrm{DC}-1230 \mathrm{~V} / 1 \mathrm{~A}\end{array}$
3 Notes for Operation
enabling switch permits machine operation only while the enabling switch is manually operated for robot teaching or other purposes in hazardous areas. Make sure that the control system is designed to activate the machine only when the enabling switch is at position 2 (3mm operating stroke). the 3-position switch to a discrepancy detection circuit such as a safety relay module. (EN ISO 13849-1)
Because two contacts are designed to operate independently, pressing the edge of a button turns on one contact earlier than the other contact, causing a delay in error only due to a time gap between the two contact operations,
In the unlikely event that an error is detected due to a time gap between two contact operations, it is recommende
button (both contacts OFF).
-With an enabling switch with rubber boot mounted on a hermetically -sealed control box, a large change in internal air pressure may cause the rubber boot to expand and sure that the enabling switcc operates correctly.
If the mounting panel is deformed when mounting an enabling switch with rubber
In boot, the normal waterproof characteristic is not assured. Keep a sufficient strength When using the HE3B with rubber boot, do not press the rubber boot with excessive pressure to an inappropriate direction, otherwise the waterproof function is impaired. When using the HE3B without rubber boot, provision for protection is required to
prevent button malfunction. prevent button malfunction.
The rubber boot may deteriorate depending on the operating environment and Replacement rubber boot(s
UReplacement rubber boot(separate order)

Type	Rubber boot Material	Rubber boot Color
HE9Z-D3Y	Silicon rubber	Yellow
HE9Z-D3B	Silicon rubber	Black
HE9Z-D3N1	NBR/PVC polyblend	Gray

Note: Installing the rubber boot as shown below. Do not break the rubber boot durring installation.

- Installing the Rubber Boot
(1) Put the long flange side into the rubber boo
(Keep foreign objects from entering
the rubber boot to prevent malfunction.)
(2) Wrap the rubber boot around
the flange. (Keep foreign objects from
entering the rubber boot to prevent malfunction.)

©. WARNING

 nis product has been designed for environment A. Use of this product in B environment may cause unwanted electromagnetic disturbances in which case the usermay be required to take adequate mitigation measures. (clause 53 of $I E C$ 60947-1) - Turn off the power to the Interlock switch before starting installation,removal, wiring, maintenance, and inspection on the Interlock switch. Failure to turn power off may cause electrical shocks or fire hazard.
Use wires of proper size to meet voltage and current requirements. Using improper wires may cause fire hazard due to abnormal heat generation.

- Wire the switch correctly after reading a catalog or this instruction sheet

A CAUTION

-When using the HE3B for safety-related equipment in a control system, refer to the safety standards and regulations in each country and region depending on the application
purpose of the actual machines and installations to make sure of correct operation. Also, purpose of the actual machines and installation to make sure of correct of
perform risk assessment to make sure of safety before starting operation. perform risk assessment to make sure of safety before starting operation.
Do not tie the enabling switch around the button with a tape or string, or distort the rubb boot to keep the switch in position 2. Otherwise the original function of the enabling switch is lost, posing a great isk of danger.

- erform a suficient tisk assessment against the high operating force at transition to the

Perf position when the button is pressed to the bottom.
Perform a sufficient risk assessment against the shape and structure where the enabling switch is mounted, in order to prevent unintended dactuation. For example, proturusion from
a teaching pendant may cause the enabling switch to be actuated by the weight of the teaching pendant.
When mounting the HE3B, make sure of sufficient strength of the mounting panel against The anticipated operating physical force. (High operating physical force is expected the anticipated operating physical force. (High operating physical force is expected
especially at transition to the OFF position when the button is pressed to the bottom.)

4 Wiring
Configuration of Contacts

- 3-position Switch: 2 amber of Poles \cdots Terminal No.: between NO1 and C1

$$
\begin{aligned}
& \text { (DF } \rightarrow O N \rightarrow O F \text { OF) } \\
& \text { (Do not use the } N C \text { terminals.) }
\end{aligned}
$$

$\frac{\text { Terminal Configuration }}{\text { (BOTTOMVIEW) }}$
\square Operating Characteristics (pressing A and B: reference values)
 \square Applicabide Wire the ambient temperature.
$-0.5 \mathrm{~mm}^{2}$ (maximum) $\times 1$
 - Soldering iron. Sn -Ag-Cu type is recommended when using lead-free solder.

- When soldering, take care not to touch the enabling switch with the soldering iron. Also ensure that no tensile force is applied to the terminal. Do not bend the terminal or apply excessive force to the termina
- Use non-corrosive liquid rosin as soldering flux

5 Mounting

Note: The rubber boot has a protrusion for orientation. When making a positioning hole on a panel, do not make a through hole; When a positioning hole is not made on the panel, cut off the protrusion from the rubber boot, but do not make a perforation in the rubber boot.

Note: Tighten the locking ring using the ring wrench (Type: MT-001). When tightening the locking ring, secure the flange part to prevent the enabling switch from rotating. secure the flange locking ring, prevent the enabling switch from rotating. enabling switch may be rotated mount the enabling switch in a

6 Dimensions

(1FPB M2P\% (With a rubber boot

\square HE3B-M2 (Without rubber boot)

Precaution for Disposal Dispose of HE3B Enabling Switch as an industrial waste.

IDEC CORPORATION nttp:/www.idec.com

DECLARATION OF CONFORMITY
We, IDEC CORPORATION declare under our sole responsibility that the Description: TTree-Position Enabling Switch
Model
Applied Union harmonized legislation and references to the relevant harmonization
standards
sod or oferen Manufacturecriarec. IECRP.
2-6-64 Nishimiyahara Yodogat 55, Avenue Edouard Herriot BP1, 82303 Caussade Cedex, France
Applicable E E Direte
Applicable Standard(s) : RN 60 Directive (2011/65/EU) Applicable Standard(s): EN 60947-5-8, EN IEC 63000
UK Authorized Representative: APEM COMPONENT LIMITED
Drakes Drive, Long Crendon, Buckinghamshire, HP18 9BA UK Applicable UK Legislation : Electrical Equipment (Safety) Regulations 2016 The Restriction of the Use of Certain Hazardous Substances in Electrical
and Electronic Equipment Regulations 2012 Applicable Standard(s): :EN 60947-5-8, EN IEC 63000

